PREMIER REFERENCE SOURCE

Advanced Operating
Systems and
Kernel Applications

Techniques and Technologies

YAIR WISEMAN & SONG JIANG

Advanced Operating
Systems and Kernel

Applications:
Techniques and Technologies

Yair Wiseman
Bar-llan University, Israel

Song Jiang
Wayne State University, USA

Information Science | INFORMATION SCIENCE REFERENCE
Hershey - New York

Director of Editorial Content: Kristin Klinger

Senior Managing Editor: Jamie Snavely
Assistant Managing Editor: Michael Brehm
Publishing Assistant: Sean Woznicki
Typesetter: Sean Woznicki
Cover Design: Lisa Tosheff

Printed at: Yurchak Printing Inc.

Published in the United States of America by
Information Science Reference (an imprint of IGI Global)
701 E. Chocolate Avenue
Hershey PA 17033
Tel: 717-533-8845
Fax: 717-533-8661
E-mail: cust@igi-global.com
Web site: http://www.igi-global.com/reference

Copyright © 2010 by IGI Global. All rights reserved. No part of this publication may be reproduced, stored or distributed in
any form or by any means, electronic or mechanical, including photocopying, without written permission from the publisher.

Product or company names used in this set are for identification purposes only. Inclusion of the names of the products or
companies does not indicate a claim of ownership by IGI Global of the trademark or registered trademark.

Library of Congress Cataloging-in-Publication Data

Advanced operating systems and kernel applications : techniques and technologies / Yair Wiseman and Song Jiang, editors.
p.cm.
Includes bibliographical references and index.
Summary: "This book discusses non-distributed operating systems that benefit researchers, academicians, and practitioners"-
-Provided by publisher.

ISBN 978-1-60566-850-5 (hardcover) -- ISBN 978-1-60566-851-2 (ebook) 1.
Operating systems (Computers) |. Wiseman, Yair, Il. Jiang, Song.
QA76.76.063A364 2009
005.4'32--dc22
2009016442

British Cataloguing in Publication Data
A Cataloguing in Publication record for this book is available from the British Library.

All work contributed to this book is new, previously-unpublished material. The views expressed in this book are those of the
authors, but not necessarily of the publisher.

Editorial Advisory Board

Donny Citron, IBM Research Lab, Israel
Eliad Lubovsky, Alcatel-Lucent LTD., USA
Pinchas Weisberg, Bar-Ilan University, Israel

List of Reviewers

Donny Citron, IBM Research Lab, Israel
Eliad Lubovsky, Alcatel-Lucent LTD., USA
Pinchas Weisberg, Bar-Ilan University, Israel
Moshe Itshak, Radware LTD., Israel

Moses Reuven, CISCO LTD., Israel

Hanita Lidor, The Open University, Israel
llan Grinberg, Tel-Hashomer Base, Israel
Reuven Kashi, Rutgers University, USA
Mordechay Geva, Bar-llan University, Israel

Table of Contents

LR] =101 < TR Xiv

ACKNOWIEAGIMENT. ...ttt bttt Xviii

Section 1
Kernel Security and Reliability

Chapter 1
Kernel Stack Overflows EIMINATIONcoiiviiiiiiiiii e ettt et s e e e s stae e e e st e e e st e e e s sraeeaesnrneeeans 1
Yair Wiseman, Bar-llan University, Israel
Joel Isaacson, Ascender Technologies, Israel
Eliad Lubovsky, Bar-llan University, Israel
Pinchas Weisberg, Bar-Ilan University, Israel

Chapter 2
DeViCe DriVEr REHADIIITYcouiiiiieiieeee e 15
Michael M. Swift, University of Wisconsin—Madison, USA

Chapter 3
Identifying Systemic Threats to Kernel Data: Attacks and Defense Techniques...........cccovvevevievieenane. 46
Arati Baliga, Rutgers University, USA
Pandurang Kamat, Rutgers University, USA
Vinod Ganapathy, Rutgers University, USA
Liviu Iftode, Rutgers University, USA

Chapter 4

The Last Line of Defense: A Comparison of Windows and Linux Authentication and

AUTNOTIZATION FRALUIES.......eiuieiee sttt ettt ettt e e e be et et esteeteeseebesreaneeneeneeaneens 71
Art Taylor, Rider University, USA

Section 2
Efficient Memory Management

Chapter 5

Swap Token: Rethink the Application of the LRU Principle on Paging to Remove

SYSTEM THIASHINGveiiiie ettt e et s e e s b e e be e e besba e e e sreabeenes 86
Song Jiang, Wayne State University, USA

Chapter 6

Application of both Temporal and Spatial Localities in the Management of Kernel

RN T O ot oSS 107
Song Jiang, Wayne State University, USA

Chapter 7

Alleviating the Thrashing by Adding Medium-Term Schedulerc.cocovveviiiiiiiiccciecee e 118
Moses Reuven, Bar-llan University, Israel
Yair Wiseman, Bar-Ilan University, Israel

Section 3
Systems Profiling
Chapter 8
The Exokernel Operating System and Active NetWOIKSc.ccccvviiiiiiiiiiccccse e 138

Timothy R. Leschke, University of Maryland, Baltimore County, USA

Chapter 9

Dynamic Analysis and Profiling of Multithreaded SyStems..........ccccveiviiiriiieiiiiiiee e 156
Daniel G. Waddington, Lockheed Martin, USA
Nilabja Roy, Vanderbilt University, USA
Douglas C. Schmidt, Vanderbilt University, USA

Section 4
1/0 Prefetching

Chapter 10

Exploiting Disk Layout and Block Access History for I/O Prefetch ..o, 201
Feng Chen, The Ohio State University, USA
Xiaoning Ding, The Ohio State University, USA
Song Jiang, Wayne State University, USA

Chapter 11
Sequential File PrefetChing in LINUXcoooiiiii e 218
Fengguang Wu, Intel Corporation, China

Chapter 12
Peer-Based Collaborative Caching and Prefetching in Maobile Broadcastcccoceeeiieiciiccieneen, 238
Wei Wu, Singapore-MIT Alliance, and School of Computing, National University of Singapore,
Singapore

Kian-Lee Tan, Singapore-MIT Alliance, and School of Computing, National University of
Singapore, Singapore

Section 5
Page Replacement Algorithms

Chapter 13

Adaptive Replacement Algorithm Templates and EELRU............ccccooiiiiiiiiniii e 263
Yannis Smaragdakis, University of Massachusetts, Amherst, USA
Scott Kaplan, Amherst College, USA

Chapter 14

Enhancing the Efficiency of Memory Management in a Super-Paging Environment

DY AMS QM ...t 276
Moshe Itshak, Bar-Ilan University, Israel
Yair Wiseman, Bar-1lan University, Israel

Compilation OF RETEFENCES ..ot 294

PAN o118 L A { LI O]) X] o LU o] TR 313

Detailed Table of Contents

LR] =101 < TR Xiv

ACKNOWIEBAGIMENT. ...ttt bttt Xviii

Section 1
Kernel Security and Reliability

Chapter 1
Kernel Stack Overflows EIMINATIONcoiiuiiiiiiiiie e it st e st e st e e s stae e et e e e stre e e e staeeaesnraeaeans 1
Yair Wiseman, Bar-Ilan University, Israel
Joel Isaacson, Ascender Technologies, Israel
Eliad Lubovsky, Bar-llan University, Israel
Pinchas Weisberg, Bar-Ilan University, Israel

The Linux kernel stack has a fixed size. There is no mechanism to prevent the kernel from overflow-
ing the stack. Hackers can exploit this bug to put unwanted information in the memory of the operat-
ing system and gain control over the system. In order to prevent this problem, the authors introduce a
dynamically sized kernel stack that can be integrated into the standard Linux kernel. The well-known
paging mechanism is reused with some changes, in order to enable the kernel stack to grow.

Chapter 2
DeVice Driver REHADIIITYccoiiiiiii e 15
Michael M. Swift, University of Wisconsin—Madison, USA

Despite decades of research in extensible operating system technology, extensions such as device drivers
remain a significant cause of system failures. In Windows XP, for example, drivers account for 85% of
recently reported failures. This chapter presents Nooks, a layered architecture for tolerating the failure
of drivers within existing operating system kernels. The design consists techniques for isolating drivers
from the kernel and for recovering from their failure. Nooks isolates drivers from the kernel in a light-
weight kernel protection domain, a new protection mechanism. By executing drivers within a domain,
the kernel is protected from their failure and cannot be corrupted. Shadow drivers recover from device
driver failures. Based on a replica of the driver’s state machine, a shadow driver conceals the driver’s

failure from applications and restores the driver’s internal state to a point where it can process requests
as if it had never failed. Thus, the entire failure and recovery is transparent to applications.

Chapter 3
Identifying Systemic Threats to Kernel Data: Attacks and Defense Techniques...........ccccovvvvevevrenenne. 46
Arati Baliga, Rutgers University, USA
Pandurang Kamat, Rutgers University, USA
Vinod Ganapathy, Rutgers University, USA
Liviu Iftode, Rutgers University, USA

The authors demonstrate a new class of attacks and also present a novel automated technique to detect
them. The attacks do not explicitly exhibit hiding behavior but are stealthy by design. They do not rely
on user space programs to provide malicious functionality but achieve the same by simply manipulating
kernel data. These attacks are symbolic of a larger systemic problem within the kernel, thus requiring
comprehensive analysis. The author’s novel rootkit detection technique based on automatic inference of
data structure invariants, which can automatically detect such advanced stealth attacks on the kernel.

Chapter 4

The Last Line of Defense: A Comparison of Windows and Linux Authentication and

AUTNOTIZATION FEALUIES......uviiie ettt e et e et e et e e be et e e be e beesbe e beesbeebeebeenteees 71
Art Taylor, Rider University, USA

With the rise of the Internet, computer systems appear to be more vulnerable than ever from security
attacks. Much attention has been focused on the role of the network in security attacks, but evidence sug-
gests that the computer server and its operating system deserve closer examination since it is ultimately
the operating system and its core defense mechanisms of authentication and authorization which are
compromised in an attack. This chapter provides an exploratory and evaluative discussion of the authen-
tication and authorization features of two widely used server operating systems: Windows and Linux.

Section 2
Efficient Memory Management

Chapter 5

Swap Token: Rethink the Application of the LRU Principle on Paging to Remove

SYSTEM THIASNINGveiice ettt e et s e e s b e e re et e besba e e e seesbeenes 86
Song Jiang, Wayne State University, USA

Most computer systems use the global page replacement policy based on the LRU principle to reduce
page faults. The LRU principle for the global page replacement dictates that a Least Recently Used (LRU)
page, or the least active page in a general sense, should be selected for replacement in the entire user
memory space. However, in a multiprogramming environment under high memory load, an indiscriminate
use of the principle can lead to system thrashing, in which all processes spend most of their time waiting
for the disk service instead of making progress. In this chapter, we will rethink the application of the

LRU principle on global paging to identify one of root causes for thrashing, and describe a mechanism,
named as swap token, to solve the issue. The mechanism is simple in its design and implementation
but highly effective in alleviating or removing thrashing. A key feature of the swap token mechanism
is that it can distinguish the conditions for an LRU page, or a page that has not been used for relatively
long period of time, to be generated and accordingly categorized LRU pages into two types: true and
false LRU pages. The mechanism identifies false LRU pages to avoid use of the LRU principle on these
pages, in order to remove thrashing.

Chapter 6

Application of both Temporal and Spatial Localities in the Management of Kernel

R TN T O ot oSSR 107
Song Jiang, Wayne State University, USA

As the hard disk remains as the mainstream on-line storage device, it continues to be the performance
bottleneck of data-intensive applications. One of existing most effective solutions to ameliorate the
bottle—neck is to use the buffer cache in the OS kernel to achieve two objectives: reduction of direct
access of on-disk data and improvement of disk performance. These two objectives can be achieved by
applying both temporal locality and spatial locality in the management of the buffer cache. Tradition-
ally only temporal locality is exploited for the purpose, and spatial locality is largely ignored. As the
throughput of access of sequentially-placed disk blocks can be an order of magnitude higher than that
of access to randomly-placed blocks, the missing of spatial locality in the buffer management can cause
the performance of applications without dominant sequential accesses to be seriously degraded. In the
chapter, we introduce a state-of-the-art technique that seamlessly combines these two locality properties
embedded in the data access patterns into the management of the kernel buffer cache management to
improve 1/O performance.

Chapter 7

Alleviating the Thrashing by Adding Medium-Term Schedulercocooeiiiiiiiiee e 118
Moses Reuven, Bar-llan University, Israel
Yair Wiseman, Bar-Ilan University, Israel

Atechnique for minimizing the paging on a system with a very heavy memory usage is proposed. When
there are processes with active memory allocations that should be in the physical memory, but their accu-
mulated size exceeds the physical memory capacity. In such cases, the operating system begins swapping
pages in and out the memory on every context switch. The authors lessen this thrashing by placing the
processes into several bins, using Bin Packing approximation algorithms. They amend the scheduler to
maintain two levels of scheduling - medium-term scheduling and short-term scheduling. The medium-
term scheduler switches the bins in a Round-Robin manner, whereas the short-term scheduler uses the
standard Linux scheduler to schedule the processes in each bin. The authors prove that this feature does
not necessitate adjustments in the shared memory maintenance. In addition, they explain how to modify
the new scheduler to be compatible with some elements of the original scheduler like priority and real-
time privileges. Experimental results show substantial improvement on very loaded memories.

Section 3
Systems Profiling

Chapter 8
The Exokernel Operating System and Active NEtWOIKSc.cccoviiiiiriiiiiiee e 138
Timothy R. Leschke, University of Maryland, Baltimore County, USA

There are two forces that are demanding a change in the traditional design of operating systems. One
force requires a more flexible operating system that can accommodate the evolving requirements of new
hardware and new user applications. The other force requires an operating system that is fast enough
to keep pace with faster hardware and faster communication speeds. If a radical change in operating
system design is not implemented soon, the traditional operating system will become the performance
bottle-neck for computers in the very near future. The Exokernel Operating System, developed at the
Massachusetts Institute of Technology, is an operating system that meets the needs of increased speed and
increased flexibility. The Exokernel is extensible, which means that it is easily modified. The Exokernel
can be easily modified to meet the requirements of the latest hardware or user applications. Ease in
modification also means the Exokernel’s performance can be optimized to meet the speed requirements
of faster hardware and faster communication. In this chapter, the author explores some details of the
Exokernel Operating System. He also explores Active Networking, which is a technology that exploits
the extensibility of the Exokernel. His investigation reveals the strengths of the Exokernel as well as
some of its design concerns. He concludes his discussion by embracing the Exokernel Operating System
and by encouraging more research into this approach to operating system design.

Chapter 9

Dynamic Analysis and Profiling of Multithreaded SyStems..........ccocveiviiiiiiiieiiiiniee e 156
Daniel G. Waddington, Lockheed Martin, USA
Nilabja Roy, Vanderbilt University, USA
Douglas C. Schmidt, Vanderbilt University, USA

As software-intensive systems become larger, more parallel, and more unpredictable the ability to analyze
their behavior is increasingly important. There are two basic approaches to behavioral analysis: static
and dynamic. Although static analysis techniques, such as model checking, provide valuable informa-
tion to software developers and testers, they cannot capture and predict a complete, precise, image of
behavior for large-scale systems due to scalability limitations and the inability to model complex external
stimuli. This chapter explores four approaches to analyzing the behavior of software systems via dynamic
analysis: compiler-based instrumentation, operating system and middleware profiling, virtual machine
profiling, and hardware-based profiling. The authors highlight the advantages and disadvantages of each
approach with respect to measuring the performance of multithreaded systems and demonstrate how
these approaches can be applied in practice.

Section 4
1/0O Prefetching

Chapter 10

Exploiting Disk Layout and Block Access History for 1/0O PrefetCh.........cccocovviiiiiiiiicce 201
Feng Chen, The Ohio State University, USA
Xiaoning Ding, The Ohio State University, USA
Song Jiang, Wayne State University, USA

As the major secondary storage device, the hard disk plays a critical role in modern computer system. In
order to improve disk performance, most operating systems conduct data prefetch policies by tracking
I/O access pattern, mostly at the level of file abstractions. Though such a solution is useful to exploit
application-level access patterns, file-level prefetching has many constraints that limit the capability of
fully exploiting disk performance. The reasons are twofold. First, certain prefetch opportunities can only
be detected by knowing the data layout on the hard disk, such as metadata blocks. Second, due to the
non-uniform access cost on the hard disk, the penalty of mis-prefetching a random block is much more
costly than mis-prefetching a sequential block. In order to address the intrinsic limitations of file-level
prefetching, we propose to prefetch data blocks directly at the disk level in a portable way. The authors’
proposed scheme, called DiskSeen, is designed to supplement file-level prefetching. DiskSeen observes
the workload access pattern by tracking the locations and access times of disk blocks. Based on analysis
of the temporal and spatial relationships of disk data blocks, DiskSeen can significantly increase the
sequentiality of disk accesses and improve disk performance in turn. They implemented the DiskSeen
scheme in the Linux 2.6 kernel and show that it can significantly improve the effectiveness of file-level
prefetching and reduce execution times by 20-53% for various types of applications, including grep,
CVS, and TPC-H.

Chapter 11
Sequential File PrefetChing in LINUX ..o 218
Fengguang Wu, Intel Corporation, China

Sequential prefetching is a well established technique for improving 1/0 performance. As Linux runs
an increasing variety of workloads, its in-kernel prefetching algorithm has been challenged by many
unexpected and subtle problems; As computer hardware evolves, the design goals should also be
adapted. To meet the new challenges and demands, a prefetching algorithm that is aggressive yet safe,
flexible yet simple, scalable yet efficient is desired. In this chapter, the author explores the principles of
1/0 prefetching and present a demand readahead algorithm for Linux. He demonstrates how it handles
common readahead issues by a host of case studies. Both static, logic and dynamic behaviors of the
readahead algorithm are covered, so as to help readers building both theoretical and practical views of
sequential prefetching.

Chapter 12

Peer-Based Collaborative Caching and Prefetching in Mobile Broadcastcccovceiiviiicicnine. 238
Wei Wu, Singapore-MIT Alliance, and School of Computing, National University of Singapore,
Singapore

Kian-Lee Tan, Singapore-MIT Alliance, and School of Computing, National University of
Singapore, Singapore

Caching and prefetching are two effective ways for mobile peers to improve access latency in mobile
environments. With short-range communication such as IEEE 802.11 and Bluetooth, a mobile peer
can communicate with neighboring peers and share cached or prefetched data objects. This kind of
cooperation improves data availability and access latency. In this chapter the authors review several
cooperative caching and prefetching schemes in a mobile environment that supports broadcasting. They
present two schemes in detail: CPIX (Cooperative PIX) and ACP (Announcement-based Cooperative
Prefetching). CPIX is suitable for mobile peers that have limited power and access the broadcast channel
in a demand-driven fashion. ACP is designed for mobile peers that have sufficient power and prefetch
from the broadcast channel. They both consider the data availability in local cache, neighbors’ cache,
and on the broadcast channel. Moreover, these schemes are simple enough so that they do not incur
much information exchange among peers and each peer can make autonomous caching and prefetching
decisions.

Section 5
Page Replacement Algorithms

Chapter 13

Adaptive Replacement Algorithm Templates and EELRU............cccooiiiiiiiiiciecece e 263
Yannis Smaragdakis, University of Massachusetts, Amherst, USA
Scott Kaplan, Amherst College, USA

Replacement algorithms are a major component of operating system design. Every replacement algo-
rithm, however, is pathologically bad for some scenarios, and often these scenarios correspond to com-
mon program patterns. This has prompted the design of adaptive replacement algorithms: algorithms
that emulate two (or more) basic algorithms and pick the decision of the best one based on recent past
behavior. The authors are interested in a special case of adaptive replacement algorithms, which are
instances of adaptive replacement templates (ARTs). An ART is a template that can be applied to any
two algorithms and yield a combination with some guarantees on the properties of the combination,
relative to the properties of the component algorithm. For instance, they show ARTSs that for any two
algorithms A and B produce a combined algorithm AB that is guaranteed to emulate within a factor
of 2 the better of A and B on the current input. They call this guarantee a robustness property. This
performance guarantee of ARTs makes them effective but a naive implementation may not be practi-
cally efficient—e.g., because it requires significant space to emulate both component algorithms at the
same time. In practice, instantiations of an ART can be specialized to be highly efficient. The authors
demonstrate this through a case study. They present the EELRU adaptive replacement algorithm, which

pre-dates ARTSs but is truly a highly optimized multiple ART instantiation. EELRU is well-known in the
research literature and outperforms the well-known LRU algorithm when there is benefit to be gained,
while emulating LRU otherwise.

Chapter 14

Enhancing the Efficiency of Memory Management in a Super-Paging Environment

DY AMSQM ..ttt bt E bRt R et Rt Rt et et e b et e et ereeneenteeneane e 276
Moshe Itshak, Bar-1lan University, Israel
Yair Wiseman, Bar-Ilan University, Israel

The concept of Super-Paging has been wandering around for more than a decade. Super-Pages are sup-
ported by some operating systems. In addition, there are some interesting research papers that show
interesting ideas how to intelligently integrate Super-Pages into modern operating systems; however,
the page replacement algorithms used by the contemporary operating system even now use the old
Clock algorithm which does not prioritize small or large pages based on their size. In this chapter an
algorithm for page replacement in a Super-Page environment is presented. The new technique for page
replacement decisions is based on the page size and other parameters; hence is appropriate for a Super-
Paging environment.

Compilation 0f REFEIENCEScviiiiiice e re e reane e 294

ADOUL ThE CONTITULOIS .oeieiieeeeeeee ettt ettt et e e e e e ettt e e e e e e e et eeeeese et e e eeeenaeereneeens 313

Xiv

Preface

Operating Systems research is a vital and dynamic field. Even young computer science students know
that Operating Systems are the core of any computer system and a course about Operating Systems is
more than common in any Computer Science department all over the world.

This book aims at introducing subjects in the contemporary research of Operating Systems. One-
processor machines are still the majority of the computing power far and wide. Therefore, this book
will focus at these research topics i.e. Non-Distributed Operating Systems. We believe this book can be
especially beneficial for Operating Systems researchers alongside encouraging more graduate students
to research this field and to contribute their aptitude.

A probe of recent operating systems conferences and journals focusing on the “pure” Operating
Systems subjects (i.e. Kernel’s task) has produced several main categories of study in Non-Distributed
Operating Systems:

. Kernel Security and Reliability
. Efficient Memory Utilization

. Kernel Security and Reliability
. I/O prefetching

. Page Replacement Algorithms

We introduce subjects in each category and elaborate on them within the chapters. The technical depth
of this book is definitely not superficial, because our potential readers are Operating Systems research-
ers or graduate students who conduct research at Operating System labs. The following paragraphs will
introduce the content and the main points of the chapters in each of the categories listed above.

KERNEL SECURITY AND RELIABILITY

Kernel Stack Overflows Elimination

The kernel stack has a fixed size. When too much data is pushed upon the stack, an overflow will be
generated. This overflow can be illegitimately utilized by unauthorized users to hack the operating

system. The authors of this chapter suggest a technique to prevent the kernel stack from overflowing by
using a kernel stack with a flexible size.

XV

Device Driver Reliability

Device Drivers are certainly the Achilles’ heel of the operating system kernel. The writers of the device
drivers are not always aware of how the kernel was written. In addition, many times, only few users may
have a given device, so the device driver is actually not indeed battle-tested. The author of this chapter
suggests inserting an additional layer to the kernel that will keep the kernel away from the device driver
failures. This isolation will protect the kernel from unwanted malfunctions along with helping the device
driver to recover.

Identifying Systemic Threats to Kernel Data: Attacks and Defense
Techniques

Installing a malware into the operating system kernel by a hacker can has devastating results for the
proper operation of a computer system. The authors of this chapter show examples of dangerous mali-
cious code that can be installed into the kernel. In addition, they suggest techniques how to protect the
kernel from such attacks.

EFFICIENT MEMORY MANAGEMENT

Swap Token: Rethink the Application of the LRU Principle on Paging to
Remove System Thrashing

The commonly adopted approach to handle paging in the memory system is using the LRU replacement
algorithm or its approximations, such the CLOCK policy used in the Linux kernels. However, when
a high memory pressure appears, LRU is incapable of satisfactorily managing the memory stress and
a thrashing can take place. The author of this chapter proposes a design to alleviate the harmful effect
of thrashing by removing a critical loophole in the application of the LRU principle on the memory
management.

Application of both Temporal and Spatial Localities in the Management of
Kernel Buffer Cache

With the objective of reducing the number of disk accesses, operating systems usually use a memory
buffer to cache previously accessed data. The commonly used methods to determine which data should
be cached are utilizing only the temporal locality while ignoring the spatial locality. The author of this
chapter proposes to exploit both of these localities in order to achieve a substantially improved 1/0
performance, instead of only minimizing number of disk accesses.

Alleviating the Trashing by Adding Medium-Term Scheduler
When too much memory space is needed, the CPU spends a large portion of its time swapping pages in

and out the memory. This effect is called Thrashing. Thrashing's result is a severe overhead time and as a
result a significant slowdown of the system. Linux 2.6 has a breakthrough technique that was suggested

XVi

by one of these book editors - Dr. Jiang and handles this problem. The authors of this chapter took this
known technique and significantly improved it. The new technique is suitable for much more cases and
also has better results in the already handled cases.

KERNEL FLEXIBILITY

The Exokernel Operating System and Active Networks

The micro-kernel concept is very old dated to the beginning of the seventies. The idea of micro-kernels
is minimizing the kernel. l.e. trying to implement outside the kernel whatever possible. This can make
the kernel code more flexible and in addition, fault isolation will be achieved. The possible drawback of
this technique is the time of the context switches to the new kernel-aid processes. Exokernel is a micro-
kernel that achieves both flexibility and fault isolation while trying not to harm the execution time. The
author of this chapter describes the principles of this micro-kernel.

I/O PREFETCHING
Exploiting Disk Layout and Block Access History for I/O Prefetch

Prfetching is a known technique that can reduce the fetching overhead time of data from the disk to
the internal memory. The known fetching techniques ignore the internal structure of the disk. Most of
the disks are maintained by the Operating System in an indexed allocation manner meaning the alloca-
tions are not contiguous; hence, the oversight of the internal disk structure might cause an inefficient
prefetching. The authors of this chapter suggests an improvement to the prefetching scheme by taking
into account the data layout on the hard disk.

Sequential File Prefetching in Linux

The Linux operating system supports autonomous sequential file prefetching, aka readahead. The variety
ofapplications that Linux has to support requires more flexible criteria for identifying prefetchable access
patterns in the Linux prefetching algorithm. Interleaved and cooperative streams are example patterns
that a prefetching algorithm should be able to recognize and exploit. The author of this chapter proposes
a new prefetching algorithm that is able to handle more complicated access patterns. The algorithm will
continue to optimize to keep up with the technology trend of escalating disk seek cost and increasingly
popular multi-core processors and parallel machines.

PAGE REPLACEMENT ALGORITHMS
Adaptive Replacement Algorithm Templates and EELRU
With the aim of facilitating paging mechanism, the operating system should decide on "page swapping

out” policy. Many algorithms have been suggested over the years; however each algorithm has advantages
and disadvantages. The authors of this chapter propose to adaptively change the algorithm according to

XVii

the system behavior. In this way the operating system can avoid choosing inappropriate method and the
best algorithm for each scenario will be selected.

Enhancing the Efficiency of Memory Management in a Super-Paging
Environment by AMSQM

The traditional page replacement algorithms presuppose that the page size is a constant; however this
presumption is not always correct. Many contemporary processors have several page sizes. Larger pages
that are pointed to by the TLB are called Super-Pages and there are several super-page sizes. This feature
makes the page replacement algorithm much more complicated. The authors of this chapter suggest a
novel algorithm that is based on recent constant page replacement algorithms and is able to maintain
pages in several sizes.

This book contains surveys and new results in the area of Operating System kernel research. The
books aims at providing results that will be suitable to as many operating systems as possible. There
are some chapters that deal with a specific Operating System; however the concepts should be valid for
other operating systems as well.

We believe this book will be a nice contribution to the community of operating system kernel de-
velopers. Most of the existing literature does not focus on operating systems kernel and many operat-
ing system books contain chapters on close issues like distributed systems etc. We believe that a more
concentrated book will be much more effective; hence we made the effort to collect the chapters and
publish the book.

The chapters of this book have been written by different authors; but we have taken some steps like
clustering similar subjects to a division, so as to make this book readable as an entity. However, the
chapters can also be read individually. We hope you will enjoy the book as it was our intention to select
and combine relevant material and make it easy to access.

xviii

Acknowledgment

First of all, we would like to thank the authors for their contributions. This book would not have been
published without their outstanding efforts. We also would like to thanks IGI Global and especially to
Joel Gamon and Rebecca Beistline for their intense guide and help. Our thanks are also given to all the
other people who have help us and we did not mention. Finally, we would like to thank our families who
let us have the time to devote to write this interesting book.

Yair Wiseman
Bar-Ilan University, Israel

Song Jiang
Wayne State University, USA

Section 1

Kernel Security and Reliability

Chapter 1

Kernel Stack Overflows
Elimination

Yair Wiseman
Bar-llan University, Israel

Joel Isaacson
Ascender Technologies, Israel

Eliad Lubovsky
Bar-1lan University, Israel

Pinchas Weisberg
Bar-llan University, Israel

ABSTRACT

The Linux kernel stack has a fixed size. There is no mechanism to prevent the kernel from overflowing the
stack. Hackers can exploit this bug to put unwanted information in the memory of the operating system
and gain control over the system. In order to prevent this problem, the authors introduce a dynamically
sized kernel stack that can be integrated into the standard Linux kernel. The well-known paging mecha-
nism is reused with some changes, in order to enable the kernel stack to grow.

INTRODUCTION

The managementofvirtual memory and the relation-
ship of software and hardware to this management
is an old research subject (Denning, 1970). In this
chapter we would like to focus on the kernel mode
stack. Our discussion will deal with the Linux
operating system running on an 1A-32 architecture
machine. However, the proposed solutions may be
relevant for other platforms and operating systems
as well.

DOI: 10.4018/978-1-60566-850-5.ch001

The memory management architecture of 1A-
32 machines uses a combination of segmentation
(memory areas) and paging to support a protected
multitasking environment (Intel, 1993). The x86
enforces the use of segmentation which provides
amechanism of isolating individual code, data and
stack modules.

Therefore, Linux splits the memory address
space of a user process into multiple segments
and assigns a different protection mode for each of
them. Each segment contains a logical portion of a
process, e.g. the code of the process. Linux uses the

Copyright © 2010, I1GI Global. Copying or distributing in print or electronic forms without written permission of 1GI Global is prohibited.

paging mechanism to implement a conventional
demand-paged, virtual-memory system and to
isolate the memory spaces of user processes
(1A-32, 2005).

Paging is a technique of mapping small fixed
sizeregions of aprocessaddress space into chunks
of real, physical memory called page frames. The
size of the page is constant, e.g. 1A-32 machines
use 4KB of physical memory.

In point of fact, IA-32 machine support also
large pages of 4MB. Linux (and Windows) do
not use this ability of large pages (also called
super-pages) and actually the 4KB page support
fulfills the needs for the implementation of Linux
(Winwood et al., 2002).

Linux enables each process to have its own
virtual address space. It defines the range of ad-
dresses within this space thatthe processisallowed
to use. The addresses are segmented into isolated
section of code, data and stack modules.

Linux provides processes a mechanism for
requesting, accessing and freeing memory (Bovet
and Cesati, 2003), (Love, 2003). Allocations are
made to contiguous, virtual addresses by arranging
the page table to map physical pages. Processes,
through the kernel, can dynamically add and re-
move memory areas to its address space. Memory
areas have attributes such as the start address in
the virtual address space, length and accessrights.
User threads share the process memory areas of
the process that has spawned them; therefore,
threads are regular processes that share certain
resources. The Linux facility known as “kernel
threads” are scheduled as user processes but lack
any per-process memory space and can only ac-
cess global kernel memory.

Unlike user mode execution, kernel mode does
not have a process address space. If a process ex-
ecutes a system call, kernel mode will be invoked
and the memory space of the caller remains valid.
Linux gives the kernel a virtual address range of
3GBt04GB, whereas the processes use the virtual
address range of 0 to 3GB. Therefore, there will
be no conflict between the virtual addresses of

Kernel Stack Overflows Elimination

the kernel and the virtual addresses of whichever
process.

In addition, a globally defined kernel address
space becomes accessible which is not process
unique but is global to all processes running in
kernel mode. If kernel mode has been entered not
via a system call but rather via a hardware inter-
rupt, a process address space is defined but it is
irrelevant to the current kernel execution.

VIRTUAL MEMORY

In yesteryears, when a computer program was
too big and there was no way to load the entire
program into the memory, the overlays technique
was used. The programmer had to split the pro-
gram into several portions that the memory could
contain and that can be executed independently.
The programmer also was in charge of putting
system calls that could replace the portions in
the switching time.

With the aim of making the programming
work easier and exempting the programmer from
managing the portions of the memory, the vir-
tual memory systems have been created. Virtual
memory systems automatically load the memory
portions that are necessary for the program ex-
ecution into the memory. Other portions of the
memory that are not currently needed are saved
in a second memory and will be loaded into the
memory only if there is a need to use them.

Virtual memory enables the execution of a
program that its size can be up to the virtual ad-
dress space. This address space is set according
to the size of the registers that are used by CPU
to access the memory addresses. E. g. by using a
processor with 32 bits, we will be able to address
4GB, whereas by using a 64 bits processor, we
will be able to address 16 Exabytes. In addition
to the address space increase, since, when an
operating system uses a virtual memory scheme
there is no need to load the entire program, there
will be a possibility to load more programs and to

Kernel Stack Overflows Elimination

execute them concurrently. Another advantage is
that the program can start the execution even just
after only a small portion of the program memory
has been loaded

In a virtual memory system any process is ex-
ecuted in a virtual machine that is allocated only
for the process. The process accesses addresses
in the virtual address space. And it can ignore
other processes that use the physical memory at
the same time. The task of the programmer and
the compiler becomes much easier because they
do not need to delve into the details of memory
management difficulties.

Virtual memory systems easily enable to pro-
tect the memory of processes from an access of
other processes, whereas on the other hand virtual
memory systems enable a controlled sharing of
memory portions between several processes. This
state of affairs makes the implementation of mul-
titasking much easier for the operating system.

Nowadays, computers usually have large
memories; hence, the well-known virtual memory
mechanism is mostly utilized for secure or shared
memory. The virtual machine interface also ben-
efits the virtual memory mechanism, whereas the
original need of loading too large processes into
the memory is not so essential anymore (Jacob,
2002).

Virtual memory operates in a similar way to
the cache memory. When there is a small fast
memory and a large slow memory, a hierarchy of
memories will be assembled. In virtual memory
the hierarchy is between the RAM and the disk.
The portion of the program that a chance of ac-
cessing to them is higher will be saved in the fast
memory; whereas the other portions of the pro-
gram will be saved in the slow memory and will
be moved to the fast memory just if the program
accesses them. The effective access time to the
memory is the weighted average that based on
the access time of the fast memory, the access
time of the slow memory and the hit ratio of the
fast memory. The effective access time will low
if the hit ratio is high.

Ahigh hit ratio will be probably produced be-
cause ofthe locality principle which stipulates that
programs tend to access again and again instruc-
tions and data that they have accessed them lately.
There isatime locality and position locality. Time
locality meansthe program mightaccess again the
same memory addresses in a short time. Position
locality meansthe program mightaccess again not
only the same memory address in a short time,
but also the nearby memory addresses might be
accessed inashorttime. According to the locality
principles, ifinstructions or data have been loaded
into the memory, there is a high chance that these
instructions or datawill be accessed soon again. If
the operating system loads also program portions
that contain the “neighborhood” of the original
instructions or data, the chances to increase the
hit ratio, will be even higher.

With the purpose of implementing virtual
memory, the program memory space is split into
pieces that are moved between the disk and the
memory. Typically, the program memory space is
split into equal pieces called pages. The physical
memory is also split into pieces in the same size
called frames.

There is an option to split the program into
unequal pieces called segments. This split is logi-
cal; therefore, it is more suitable for protection
and sharing; however on the other hand, since the
pieces are not equal, there will be a problem of
external fragmentation. To facilitate both of the
advantages, there are computer architectures that
use segments of pages.

When a program tries to access a datum in an
address that is not available in the memory, the
computer hardware will generate a page fault.
The operating system handles the page fault by
loading the missing page into the memory while
emptying out a frame of the memory if there is a
need for that. The decision of which page should
be emptied out is typically based on LRU. The
time needed by the pure LRU algorithm is too
costly because we will need to update too many
data after every memory access, so instead most

of the operating systems use an approximation of
LRU. Each page inthe memory has areference bit
that the computer hardware setwhenever the page
is accessed. According to the CLOCK algorithm
(Corbato, 1968), (Nicola et al., 1992), (Jiang et
al., 2005), the pages are arranged in a circular
list so as to select a page for swapping out from
the memory, the operating system moves on the
page listand select the first page that its reference
bit is unset. While the operating system moves
on the list, it will unset the reference bits of the
pages that it sees during the move. At the next
search for a page for swapping out, the search
will continue from the place where the last search
was ended. A page that is being used now will not
be swapped out because its reference bit will be
set before the search will find it again. CLOCK
is still dominating the vast majority of operating
systems including UNIX, Linux and Windows
(Friedman, 1999).

Virtual memory is effective just when not
many page faults are generated. According to
the locality principle the program usually access
memory addresses at the nearby area; therefore,
if the pages in the nearby area are loaded in the
memory, just few page faults will occur. During
the execution of a program there are shifts from
one locality to another. These shifts usually cause
to an increase in the number of the page faults.
In any phase of the execution, the pages that are
included in the localities of the process are called
the Working Set (Denning, 1968).

As has been written above, virtual memory
works very similar to cache memory. In cache
memory systems, there is a possibility to imple-
ment the cache memory such that each portion of
the memory can be put in any place in the cache.
Such a cache is called Fully Associative Cache.
The majoradvantage of Fully Associative Cache is
itshigh hitratio; however Fully Associative Cache
is more complex, the search time in it is longer
and its power consumption is higher. Usually,
cache memoriesare Set Associative meaning each
part of the memory can be put only in predefined

Kernel Stack Overflows Elimination

locations, typically just 2 or 4. In Set Associative
Cache the hit ratio is smaller, but the search time
in it is shorter and the power consumption is
lower. In virtual memory, the penalty of missing
a hit is very high because it causes an access to
a mechanical disk that is very slow; therefore, a
page can be located in any place in the memory
even though this will make the search algorithm
more complex and longer.

In the programmer’s point of view, the pro-
gramswill be writtenusing only virtual addresses.
When a program is executed, there is a need
to translate the virtual addresses into physical
addresses. This translation is done by a special
hardware component named MMU (Memory
Management Unit). In some cases the operating
system also participates in the translation pro-
cedure. The basis for the address translation is a
page table that the operating system prepares and
maintains. The simpler form of the page table is a
vector thatits indices are the virtual page numbers
and every entry in the vector contains the fitting
physical page number. With the aim of translat-
ing a virtual address into a physical address,
there is a need to divide the address into a page
number and an offset inside the page. According
to the page number, the page will be found in the
page table and the translation to a physical page
number will be done. Concatenating the offset to
the physical page number will yield the desired
physical address.

Flat page table that maps the entire virtual
memory space might occupy too much space in
the physical memory. E. g. if the virtual memory
space is 32 bitsand the page size is4KB, there will
be needed more than millions entries in the page
table. If each entry in the page table is 4 bytes,
the page table size of each process will be 4MB.
There is a possibility to reduce the page table size
by using registers that will point to the beginning
andthe end of the segment that the program makes
use of. E. g. UNIX BSD 4.3 permanently saves
the page tables of the processes in the virtual
memory of the operating system. The page table

Kernel Stack Overflows Elimination

consists of two parts - one part maps the text,
the data and the heap section that typically oc-
cupy a continuous region at the beginning of the
memory; whereas the second part maps the stack
that occupy a region beginning at the end of the
virtual memory. This make a large “hole” in the
middle of the page table between the heap region
and the stack region and the page table is reduced
to just two main areas. Later systems have also
needs of dynamic libraries mapping and thread
support; therefore the memory segments of the
program are scattered over the virtual memory
address space. With the aim of mapping a sparse
address space and yet reducing the page table
size, most of the modern architectures make use
of a hierarchy page table. E. g. Linux uses a three
level architecture independent page table scheme
(Hartigetal., 1997). The tables in the lower levels
will be needed just if they map addresses that the
process accesses. E. g. Let us assume a hierarchy
page table of two levels that the higher level page
table contains 1024 pointers to lower level page
tables and each page table in the lower level also
contains 1024 entries. An address of 32 bits will
be split into 10 bits that will contain the index of
the higher level page table where a pointer to a
page table in a lower level will reside, more 10
bits that will contain an index to a lower level
page table where a pointer to the physical frame
in the memory will reside and 12 bits that will
contain the offset inside the physical page. If the
address space is mapped by 64 bits, two levels page
table will not be enough and more levels should
be added in order to reduce the page table into a
reasonable size. This may make the translation
time longer, but a huge page table will occupy too
much memory space and will be an unnecessary
waste of memory resources.

STACK ALLOCATIONS
Fixed Size Allocations

User space allocations are transparent with a large
and dynamically growing stack. In the Linux
kernel’s environment the stack is small-sized and
fixed. It is possible to determine the stack size
as from 2.6.x kernel series during compile time
choosing between4to 8KB. The currenttendency
is to limit the stack to 4KB.

The allocation of one page is done as one non-
swappable base-page of 4KB. If a 8KB stack is
used, two non-swappable pages will be allocated,
even if the hardware support an 8KB super-page
(Itshak and Wiseman, 2008); in point of fact, IA-
32 machines do not support 8KB super-pages, so
8KB is the only choice.

The rational for this choice is to limit the
amount of memory and virtual memory address
space that is allocated in order to support a large
number of user processes. Allocating an 8KB stack
increases the amount of memory by a factor of
two. In addition the memory must be allocated
as two contiguous pages which are relatively
expensive to allocate.

A process that executes in kernel mode, i.e.
executing a system call, will use its own kernel
stack. The entire call chain of a process execut-
ing inside the kernel must be capable of fitting
on the stack. In an 8KB stack size configuration,
interrupt handlers use the stack of the process
they interrupt. This means that the kernel stack
size might need to be shared by a deep call chain
of multiple functions and an interrupt handler. In
a 4KB stack size configuration, interrupts have a
separate stack, making the exception mechanism
slower and more complicated (Robbins, 2004).

The strict size of the stack may cause an over-
flow. Any system call must be aware of the stack
size. If large stack variables are declared and/or
too many function calls are made, an overflow
may occur (Baratloo et al., 2000), (Cowan et al.,
1998).

Memory corruption caused by astack overflow
may cause the system to be in an undefined state
(Wilander and Kamkar, 2003). The kernel makes
no effort to manage the stack and no essential
mechanism oversees the stack size.

In (Chou et al., 2001) the authors present an
empirical study of Linux bugs. The study com-
pares errors in different subsections of Linux
kernels, discovers how bugs are distributed and
generated, calculates how long, on average, bugs
live, clusters bugs according to error types, and
compares the Linux kernel bugs to the OpenBSD
kernel bugs. The data used in this study was col-
lected from snapshots of the Linux kernel across
seven years. The study refers to the versions
until the 2.4.1 kernel series, as it was published
in 2001. 1025 bugs were reported in this study.
The reason for 102 of these bugs is large stack
variables on the fixed-size kernel stack. Most of
the fixed-size stack overflow bugs are located in
devicedrivers. Device driversare written by many
developers who may understand the device more
than the kernel, but are not aware of the kernel
stack limitation. Hence, no attempt is made to
confrontthissetback. Inaddition, only a few users
may have a given device; thus, only a minimal
check might be made for some device drivers. In
addition, Cut-and-Paste bugs are very common
in device drivers and elsewhere (Li et al., 2004);
therefore, the stack overflow bugs are incessantly
and unwarily spread.

The goal of malicious attackers is to drive
the system into an unexpected state, which can
help the attacker to infiltrate into the protected
portion of the operating system. Overflowing
the kernel stack can provide the attacker this
option which can have very devastating security
implications (Coverity, 2004). The attackers look
for rare failure cases that almost never happen in
normal system operations. Itishard to track down
all the rare cases of kernel stack overflow, thus
the operating system remains vulnerable. This
leads us to the unavoidable conclusion: Since
the stack overflows are difficult to detect and fix,

Kernel Stack Overflows Elimination

the necessary solution is letting the kernel stack
grow dynamically.

A small fixed size stack is a liability when
trying to port code from other systems to Linux.
The kernel thread capability would seem offer
an ideal platform for porting user code and non-
Linux OS code. This facility is limited both by
the lack of a per-process memory space and by a
small fixed sized size stack.

Anexample of the inadequacy of the fixed size
stack isinthe very popular use of the Ndiswrapper
project (Fuchs and Pemmasani, 2005) to imple-
ment Windows kernel APl and NDIS (Network
Driver Interface Specification) APl within the
Linuxkernel. This canallow the use of a Windows
binary driver for a wireless network card running
natively within the Linux kernel, without binary
emulation. This is frequently the solution used
when hardware manufacturers refuse to release
detail of their product so a native Linux driver is
not available.

The problem with this approach is that the
Windows kernel provides a minimum of 12KB
kernel stack whereas Linux in the best case uses
an 8KB stack. This mismatch of kernel stack
sizes can and cause system stack corruptions
leading to kernel crashes. This would ironically
seem to be the ultimate revenge of an OS (MS
Windows) not known for long term reliability on
an OS (Linux) which normally is known for its
long term stability.

Current Solutions

Currently, Operating Systems developers have
suggested several methods howto tackle the kernel
stack overflows. They suggest to change the way
of writing the code that supposed to be executed
in kernel mode instead of changing the way that
kernel stack is handled. This is unacceptable - the
system must cater for its users!

The common guidance for kernel code devel-
opers is not to write recursive functions. Infinite
number of calls to a recursive function is a com-

Kernel Stack Overflows Elimination

mon bug and it will cause very soon a kernel stack
overflow. Even too deep recursive call can easily
make the stack growing fastand overflowing. This
is also correct for deeply nested code. The kernel
stack size is very small and even the kernel stack
of Windows that can be 12KB or 24KB might
overflow very quickly if the kernel code is not
written carefully.

Also a common guidance is not to use local
variables in kernel code. Global variables are not
pushed upon the kernel stack; therefore they will
save space on the kernel stack and will not cause
a kernel overflow. This guidance is definitely
against software engineering rules. A code with
only global variables is quite hard to be read and
quite hard to be checked and rewritten; however
since the kernel stack space is so precise and even
atiny exceedingwill be terribly devastating, kernel
code developers agree to write an unclear code
instead of having a buggy code.

Anotherfrequentguidance isnottodeclare local
variables asasingle character or evenasastring of
characters if the intention isto create a local buffer
for a function in the kernel code. Instead, the buf-
fer should be put in a paged or a non-paged pool
and then a declaration of a pointer to that buffer
can be made. In this way, when a call from this
kernel function is made, not all the buffer will be
pushed upon the kernel stack and only the pointer
will actually be pushed upon the stack.

This is also one of the reasons why the ker-
nel code is not written in C++. C++ needs large
memory space for allocations of classes and
structures. Sometimes, these allocations can be
too large and from time to time they can be a
source for kernel stack overflows.

Therewere some works that suggested to dedi-
cate a special kernel stack for specific tasks e.g.
(Draves et al., 1991); however, these additional
kernel stacks make the code very complex and the
possibilities for bugs in the kernel code become
more likely to happen.

Some works tried to implement a hardware
solutione.g. (Frantzenand Shuey, 2001); however

such a solution can be difficult to implementation
because of the pipelined nature of the nowadays
machines. In order to increase the rate of comput-
ers, many manufacturers use the pipeline method
(Jouppi and Wall, 1989), (Kogge, 1981), (Wise-
man, 2001), (Patterson and Hennessy, 1997).
This method enables performing several actions
in a machine in parallel mode. Every action is in
a different phase of its performing. The action is
divided into some fundamental sub-actions which
can be performed in one clock cycle. In every
clock cycle, from every action, the machine will
perform a new sub-action. A pipeline machine
can perform different sub-actions in parallel. In
every clock cycle, the machine performs sub-
actions for differentactions. The stack handling is
complicated because itis depended onthe braches
to functions which are not easy to be predicted,
however, some solutions have been suggested to
this difficulty e.g. (McMahan, 1998).

Dynamic Size Allocations

In the 1980s, a new operating system concept
was introduced: the microkernels (Liedtke, 1996),
(Bershad et al., 1995). The objective of micro-
kernels was to minimize the kernel code and to
implement anything possible outside the kernel.
This concept is still alive and embraced by some
operating systems researchers (Leschke, 2004),
although the classic operating systems like Linux
still employ the traditional monolithic kernel.
The microkernels concept has two main advan-
tages: First, the system is flexible and extensible,
i.e. the operating system can easily adapt a new
hardware. Second, many malfunctionsare isolated
like in a regular application; because many parts
of the operating system are standard processes
and thus are independent. A permanent failure
of a standard process does not induce a reboot;
therefore, the microkernel based operating systems
tend to be more robust (Lu and Smith, 2006).
Amicrokernel feature that is worthy of note is
the address space memory management (Liedtke,

1995). A dedicated process is in charge of the
memory space allocation, reallocations and free.
The process is executed in user mode; thus, the
page faultsare forwarded and handled inuser mode
and cannot cause a kernel bug. Moreover, most of
the kernel services are implemented outside the
kernel and specifically the device drivers; hence
these services are executed in user mode and are
not able to use the kernel stack.

Althoughthe microkernel has many theoretical
advantages (Hand et al., 2005), its performance
and efficiency are somewhat disappointing. Nowa-
days, most of the modern operating systems use
a monolithic kernel. In addition, even when an
operating system uses amicrokernel scheme, there
still will be minimal use of the kernel stack.

We propose an approach that suggests a dy-
namically growing stack. However, unlike the
microkernel approach, we will implement the
dynamically growing stack within the kernel.

Real Time Considerations

Linux is designed as a non-preemptive kernel.
Therefore, by its nature, is not well suited for
real time applications that require deterministic
response time.

The 2.4.x Linux kernel versions introduced
several new amendments. One of them was the
preemptive patch which supports soft real-time
applications (Anzinger and Gamble, 2000). This
patch is now a standard in the new Linux kernel
versions (Kuhn, 2004). The objective of this
patch is executing the scheduler more often by
finding places in the kernel code that preemptions
can be executed safely. On such cases more data
is pushed onto the kernel stack. This additional
data can worsen the kernel overflow problem.
In addition, these cases are hard to be predicted
(Williams, 2002).

For hard real-time applications, RTLinux
(Dankwardt, 2001) or RTAI (Mantegazz et al.,
2000) can be used. These systems use a nano-
kernel that runs Linux as its lowest priority

Kernel Stack Overflows Elimination

execution thread. This thread is fully preemptive
hence real-time tasks are never delayed by non-
real-time operations.

Another interesting solution for a high-speed
kernel-programming environment is the KML
(Kernel Mode Linux) project (Maeda, 2002a),
(Maeda, 2002b), (Maeda, 2003). KML allows
executing user programs in kernel mode and a
direct access to the kernel address space. The
kernel mode execution eliminates the system call
overhead, because every system call is merely a
function call. The main disadvantage of KML is
that any user can write to the kernel memory. In
order to trim down the aforementioned problem,
the author of KML suggests using TAL (Typed
Assembly Language) which checks the program
before loading. However, this check does not al-
ways find the memory leak. As aresult, the security
isvery poor. Itisdifficultto preventillegal memory
access and illegal code execution. On occasion,
memory illegal accesses are done deliberately, but
they also can be performed accidentally.

Our approach to increase the soft real-time
applications responsiveness is to run them as
kernel threads while using fundamental normal
process facilities such as a large and dynamically
growing stack. While running in kernel context,
it is possible to achieve a better predictive re-
sponse time as the kernel is the highest priority
component in the system. The solution provides
the most important benefits you find in the KML
project, although this solution is a more intuitive
and straightforward implementation.

IMPLEMENTATION

The objective of this implementation is to sup-
port the demand paging mechanism for the kernel
mode stack. The proposed solution is a patch for
the kernel that can be enabled or disabled using
the kernel configuration tools. In the following
sections the design, implementation and testing
utilities are described.

Kernel Stack Overflows Elimination

Figure 1. Kernel Memory Stack and the Process Descriptor

Start Highest
of Memory
Stack Address
Stack —p
Pointer Lowest
Memory
Address
thread_info /
Current —p

Process Descriptor

In order to manage its processes, Linux has for
each process a process descriptor containing the
information related to this process (Gorman,
2004). Linux stores the process descriptors in a
circular doubly linked list called the task list. The
process descriptor’s pointer is a part of a structure
named “thread_info” that is stored under the bot-
tom of the kernel mode stack of each process as
shown in Figure 1.

This feature allows referencing the process
descriptor using the stack pointer without any
memory referencing. The reason for this method
of implementation is improved performance. The
stack pointer address is frequently used; hence, it
is stored in a special purpose register. In order to
get a reference for the current process descriptor
faster, the stack pointer is used. This is done by
a macro called “current”.

In order to benefit the performance and leave
the “current” mechanism untouched, anewalloca-
tion interface is introduced which allocates one
physical page and a contiguous virtual address
space that is aligned to the new stack size.

The new virtual area of the stack size can be
of any size. The thread_info structure is set to
the top of the highest virtual address minus the
thread_infostructure size. The stack pointer starts
from beneath the thread_info. Additional physi-
cal pages will be allocated and populated in the

virtual address space if the CPU triggers a page
fault exception.

Exceptions

The 1A-32 architecture provides 4 protection
levels of code execution. Usually they are called
“rings” and numbered as 0,1,2,3 whereas 0 is the
most privileged ring and 3 is the least privileged.
Linux uses just ring 0 and 3. Ring 0 is used when
the kernel is executed, whereas 3 is used for non-
privileged user space applications.

When a process is executed and an exception
occurs, the ring is switched from 3 to 0. One of
the consequences of this switch is changing of the
stack. The process’ user space stack is replaced
by the process’ kernel mode stack while the CPU
pushes several registers to the new stack. When
the execution is completed, the CPU restores the
interrupted process user space stack using the
registers it pushed to the kernel stack.

Ifanexception occursduringakernel execution
in the kernel mode stack, the stack is not replaced
because the task is already running in ring 0. The
CPU cannot push the registers to the kernel mode
stack, thus it generates a double fault exception.
This is called the stack starvation problem.

Interrupt Task

Interrupts divert the processor to code outside the
normal flow of control. The CPU stops what it
is currently doing and switches to a new activity.
This activity is usually held in the context of the
processthatiscurrently running, i.e the interrupted
process. As mentioned, current scheme may lead
to astack starvation problem if a page fault excep-
tion happens in the kernel mode stack.

The 1A-32 provides a special task manage-
ment facility to support process management in
the kernel. Using this facility while running in
the kernel mode causes the CPU to switch an
execution context to a special context, therefore
preventing the stack starvation problem.

The current Linux kernel release uses this kind
of mechanism to handle double fault exceptions
that are non-recoverable exceptions in the kernel.
This mechanism uses a system segment called a
Task State Segment that is referenced viathe IDT
(Interrupt Descriptor Table) and the GDT (Global
Descriptor Table) tables. This mechanism provides
a protected way to manage processes although it
is not widely used because of a relatively larger
context switch time.

We suggest adding the special task manage-
ment facility to handle page fault exceptions in
the kernel mode stack. Using this mechanism
it is possible to handle the exceptions by al-
locating a new physical page, mapping it to the
kernel page tables and resuming the interrupted
process. Current user space page faults handling
will remains as is.

EVALUATION

First, we used the BYTE UNIX benchmark
(BYTE, 2005) in order to check that we did not
introduce unnecessary performance degradation
in the system’s normal flow of execution. The
benchmark that was used checks system perfor-
mance by the following criteria (as can be seen in

10

Kernel Stack Overflows Elimination

the following figures 2, 3): system call overhead,
pipe throughput, context switching, process cre-
ation (spawn) and execl.

Results measurements are presented in Ips
(loops per second). We executed the benchmark on
two different platforms. The first test was executed
on a Pentium 1.7GHz with 512MB RAM and a
cache of 2MB running Linux kernel 2.6.9 with
Fedoracore 2distribution. The detailed resultsare
in Figure 2. Blue columns represent the original
kernel whereas the green columns represent the
patched kernel.

We also executed the BYTE benchmark on
a Celeron Pentium 2.4GHz with 256MB RAM
and a cache of 512KB running Linux kernel 2.6.9
with Fedora core 2 distribution. The results of
this test can be seen in Figure 3. Examination
of the results found no performance degradation
in the new mechanism integrated into the Linux
kernel and the results of all tests were essentially
unchanged.

Second, we performed a functionality test to
check that when the CPU triggers a page fault in
the kernel mode stack, a new page is actually al-
located and mapped to the kernel page tables.

This feature was accomplished by writing a
kernel module and intentionally overloading the
stack by a large vector variable. We then added
printing to the page fault handler and were able
to assess that the new mechanism worked as
expected.

It has to be noted that only page faults that are
in the kernel mode stack are handled using the
task management facility, whereas page faults
triggered from user space processes are handled
as in the original kernel.

Triggering of page faults from the user pro-
cesses stack and even more so from the kernel
mode stack rarely happens. In both scenarios per-
formance decrement in the system is negligible.

In spite of the aforementioned, we obtained
several measurements to ensure that the new
mechanism does not demonstrate anomalous
results.

Kernel Stack Overflows Elimination

Figure 2. BYTE Unix benchmark for Pentium 1.7GHz.

Benchmark

1800000
1600000
1400000
1200000
1000000

PS 800000

600000
400000
200000

0

system call pipe throughpul pipe-based

overhead test

Page fault latency measurements showed that
the original page fault time is averagely 3.55 mi-
croseconds on the Pentium 1.7GHz we used in
the previous test, whereas the page fault time of
the kernel stack is averagely 7.15 microseconds
i.e. the kernel stack page fault time is apparently
roughly double.

execl
contextswitching Po"

CONCLUSION

An overflow in kernel stack is a common bug in
the Linux operating system. These bugs are dif-
ficult to detect because they are created as a side
effect of the code and not as an inherent mistake
in the algorithm implementation.

Figure 3. BYTE Unix benchmark for Pentium 2.4GHz.

Benchmark

1200000
1000000
800000

Ips 600000
400000
200000

0
overhead Test

systemcall PipeThroughput pipe-based

context switching SPawn Execl

11

This chapter shows how the size of the kernel
stack can dynamically grow using the common
mechanism of page faults giving a number of
advantages:

1. Stack pages are allocated on demand. If a
kernel process needs minimal stack only
one page isallocated. Only kernel processes
that need larger stacks will have more pages
allocated.

2. The stack pages allocated per kernel pro-
cess need not be contiguous but rather
non-contiguous physical pages are mapped
contiguously by the MMU.

3. Stack overflows can be caught and damage
to other kernel process stacks prevented.

4. Larger kernel stacks can be efficiently pro-
vided. This facilitates porting of code that
has not been designed for minimal stack
usage into the Linux kernel.

REFERENCES

Analysis ofthe Linux kernel (2004). San Francisco,
CA: Coverity Corporation.

Anzinger, G., & Gamble, N. (2000). Design of
a Fully Preemptable Linux Kernel. MontaVista
Software.

Baratloo, A., Tsai, T., & Singh, N. (2000). Trans-
parent Run-Time Defense Against Stack Smashing
Attacks. In Proceedings of the USENIX annual
Technical Conference.

Bershad, B. N., Chambers, C., Eggers, S., Maeda,
C., McNamee, D., & Pardyak, P. et al (1995).
SPIN - An Extensible Microkernel for Applica-
tion-specific Operating System Services. ACM
Operating Systems Review, 29(1).

12

Kernel Stack Overflows Elimination

Chou, A., Yang, J. F., Chelf, B., Hallem, S., &
Engler, D. (2001). An Empirical Study of Op-
erating Systems Errors. In Proceedings of the
18th ACM, Symposium on Operating System
Principals (SOSP), (pp. 73-88), Lake Louise,
Alta. Canada.

Corbato, A. (1968). Paging Experiment with
the Multics System. MIT Project MAC Report,
MAC-M-384.

Cowan, C., Pu, C., Maier, D., Hinton, H., Wal-
pole, J., Bakke, P., et al. (1998). StackGuard:
Automatic Adaptive Detection and Prevention of
Buffer-Overflow Attacks. In Proceedings of the
7th USENIX Security Conference, San Antonio,
TX.

Dankwardt, K. (2001). Real Time and Linux,
Part 3: Sub-Kernels and Benchmarks. Retrieved
from

Denning, P. (1970). Virtual Memory. [CSUR].
ACM Computing Surveys, 2(3), 153-189.
d0i:10.1145/356571.356573

Denning, P. J. (1968). The Working Set Model for
Program Behavior. Communications of the ACM,
11(5), 323-333. doi:10.1145/363095.363141

Draves, R. P., Bershad, B. N., Rashid, R. F., &
Dean, R.W. (1991). Using continuationsto imple-
ment thread management and communication in
operating systems. In Proceedings of the thirteenth
ACM symposiumon Operating systems principles,
Pacific Grove, CA, (pp. 122-136).

Frantzen, M., & Shuey, M. (2001). StackGhost:
Hardware facilitated stack protection. In Proceed-
ings of the 10th conference on USENIX Security
Symposium — Washington, D.C. (Vol. 10, p. 5).

Friedman, M. B. (1999). Windows NT Page
Replacement Policies. In Proceedings of 25th
International Computer Measurement Group
Conference, (pp. 234-244).

Kernel Stack Overflows Elimination

Fuchs, P., & Pemmasani, G. (2005). NdisWrapper.
Retrieved from http://ndiswrapper.sourceforge.
net/

Gorman, M. (2004). Understanding The Linux
Virtual Memory Manager. Upper Saddle River,
NJ: Prentice Hall, Bruce Perens’ Open Source
Series.

Hand, S. Warfield, A. Fraser, K. Kotsovinos E.
& Magenheimer, D. (2005). Are Virtual Machine
Monitors Microkernels Done Right? In Pro-
ceedings of the Tenth Workshop on Hot Topics
in Operating Systems (HotOS-X), June 12-15,
Santa-Fe, NM.

Hartig, H. Hohmuth, M. Liedtke, J. Schonberg, &
S.Wolter, J. (1997). The Performance of u-Kernel-
Based Systems. In Proceedings of the sixteenth
ACM symposiumon Operating systems principles,
Saint Malo, France, (p.66-77).

Intel Pentium Processor User’s Manual. (1993).
Mt. Prospect, IL: Intel Corporation. IA-32 Intel
Architecture Software Developer’s Manual,
(2005). Volume 3: System Programming Guide.
Mt. Prospect, IL: Intel Corporation.

Itshak, M., & Wiseman, Y. (2008). AMSQM:
Adaptive Multiple SuperPage Queue Manage-
ment. In Proc. IEEE Conference on Information
Reuse and Integration (IEEE IRI-2008), Las
\Vegas, Nevada, (pp. 52-57).

Jacob, B. (2002). Virtual Memory Systems and
TLB Structures. In Computer Engineering Hand-
book. Boca Raton, FL: CRC Press.

Jiang, S., Chen, F., & Zhang, X. (2005). CLOCK-
Pro: an Effective Improvement of the CLOCK
Replacement. In Proceedings of 2005 USENIX
Annual Technical Conference, Anaheim, CA (pp.
323-336).

Jouppi, N. P., & Wall, D. W. (1989). Available
Instruction Level Parallelism for Superscalar
and Superpipelined Machines. In Proc. Third
Conf. OnArchitectural Supportfor Programming
Languages and Operation System IEEE/ACM,
Boston, (pp. 82-272).

Kogge, P. M. (1981). The Architecture of Pipelined
Computers. New-York: McGraw-Hill.

Kuhn, B. (2004). The Linux real time interrupt
patch. Retrieved from http://linuxdevices.com/
articles/AT6105045931.html.

Leschke, T. (2004). Achieving speed and flex-
ibility by separating management from protec-
tion: embracing the Exokernel operating sys-
tem. Operating Systems Review, 38(4), 5-19.
d0i:10.1145/1031154.1031155

Li, Z., Lu, S., Myagmar, S., & Zhou, Y. (2004).
CP-Miner: A Tool for Finding Copy-paste and
Related Bugs in Operating System Code. In The
6th Symposium on Operating Systems Design
and Implementation (OSDI ‘04), San Francisco,
CA.

Liedtke,J. (1995). On Micro-Kernel Construction.
In Proceedings of the 15th ACM Symposium on
Operating System Principles. New York: ACM.

Liedtke, J. (1996). Toward Real Microker-
nels. Communications of the ACM, 39(9).
doi:10.1145/234215.234473

LINUX Pentiums using BYTE UNIX Benchmarks
(2005). Winston-Salem, NC: SilkRoad, Inc.

Love, R. (2003). Linux Kernel Development (1%
Ed.). Sams.

Lu, X., & Smith, S. F. (2006). A Microkernel
Virtual Machine: Building Security with Clear
Interfaces. ACM SIGPLAN Workshop on Pro-
gramming Languages and Analysis for Security,
Ottawa, Canada, June 10, (pp. 47-56).

13

Maeda, T. (2002). Safe Execution of User programs
in Kernel Mode Using Typed Assembly Language.
Master Thesis, The University of Tokyo, Tokyo,
Japan.

Maeda, T. (2002). Kernel Mode Linux: Execute
user process inkernel mode. Retrieved from http://
www.yl.is.s.u-tokyo.ac.jp/~tosh/kml/

Maeda, T. (2003). Kernel Mode Linux. Linux
Journal, 109, 62-67.

Mantegazz, P., Bianchi, E., Dozio, L., Papacharal-
ambous, S., & Hughes, S. (2000). RTAI: Real-Time
Application Interface. Retrieved from http://www.
linuxdevices.com/articles/ AT6605918741.html.

McMahan, S. (1998). Cyrix Corp. Branch Pro-
cessing unit with a return stack including repair
using pointers from different pipe stage. U.S.
Patent No. 5,706,491.

Nicola, V.F.,Dan,A.,&Diaz,D. M. (1992). Analy-
sis of the generalized clock buffer replacement
scheme for database transaction processing. ACM
SIGMETRICS Performance Evaluation Review,
20(1), 35-46. d0i:10.1145/149439.133084

14

Kernel Stack Overflows Elimination

Patterson, D. A., & Hennessy, J. L. (1997). Com-
puter Organization and Design (pp. 434-536).
San Francisco, CA: Morgan Kaufmann Publish-
ers, INC.

Robbins, A. (2004). Linux Programming by Ex-
ample. Upper Saddle River, NJ: Pearson Educa-
tion Inc.

Wilander, J., & Kamkar, M. (2003). AComparison
of Publicly Available Tools for Dynamic Buf-
fer Overflow Prevention. In Proceedings of the
10th Network and Distributed System Security
Symposium (NDSS’03), San Diego, CA, (pp.
149-162).

Williams, C. (2002). Linux Scheduler Latency.
Raleigh, NC: Red Hat Inc.

Winwood, S. J., Shuf, Y., & Franke, H. (2002).
Multiple page size support in the Linux kernel.
Proceedings of Ottawa Linux Symposium, Ottawa,
Canada. Bovet, D. P. & Cesati, M. (2003). Un-
derstanding the Linux Kernel (2nd Ed). Sebastol,
CA: O’reilly.

15

Chapter 2
Device Driver Reliability

Michael M. Swift
University of Wisconsin—Madison, USA

ABSTRACT

Despite decades of research in extensible operating system technology, extensions such as device drivers
remain a significant cause of system failures. In Windows XP, for example, drivers account for 85% of
recently reported failures. This chapter presents Nooks, a layered architecture for tolerating the failure
of drivers within existing operating system kernels. The design consists techniques for isolating drivers
from the kernel and for recovering from their failure. Nooks isolates drivers from the kernel in a light-
weight kernel protection domain, a new protection mechanism. By executing drivers within a domain,
the kernel is protected from their failure and cannot be corrupted. Shadow drivers recover from device
driver failures. Based on a replica of the driver’s state machine, a shadow driver conceals the driver’s
failure from applications and restores the driver’s internal state to a point where it can process requests
as if it had never failed. Thus, the entire failure and recovery is transparent to applications.

INTRODUCTION

Improvingreliability is one ofthe greatest challenges
forcommodity operating systems, such as Windows
and Linux. System failures are commonplace and
costly across all domains: in the home, in the server
room, and inembedded systems, where the existence
of the OS itself is invisible. At the low end, failures
lead to user frustration and lost sales. At the high

DOI: 10.4018/978-1-60566-850-5.ch002

end, an hour of downtime from a system failure can
lead to losses in the millions.

Computer system reliability remains a crucial
but unsolved problem. This problem has been ex-
acerbated by the adoption of commodity operating
systems, designed for best-effort operation, in en-
vironments that require high availability. While the
cost of high-performance computing continues to
drop because of commaoditization, the cost of failures
(e.g., downtime onastock exchange or e-commerce
server, or the manpower required to service a help-

Copyright © 2010, I1GI Global. Copying or distributing in print or electronic forms without written permission of 1GI Global is prohibited.

desk request in an office environment) continues
to rise as our dependence on computers grows.
In addition, the growing sector of “unmanaged”
systems, such as digital appliances and consumer
devices based on commodity hardware and soft-
ware, amplifies the need for reliability.

Devicedriversare aleading cause of operating
systemfailure. Device driversand other extensions
have become increasingly prevalentincommodity
systemssuchas Linux (where they are called mod-
ules) and Windows (where they are called drivers).
Extensions are optional components that reside in
the kernel address space and typically communi-
cate with the kernel through published interfaces.
Drivers now account for over 70% of Linux kernel
code, and over 35,000 different drivers with over
112,000 versions exist on Windows XP desktops.
Unfortunately, most of the programmers writing
drivers work for independent hardware vendors
and have significantly less experience in kernel
organization and programming than the program-
mers that build the operating system itself.

In Windows XP, for example, drivers cause
85% ofreported failures. In Linux, the frequency of
codingerrorsisup to seven times higher for device
drivers than for the rest of the kernel. While the
core operating system kernel canreach high levels
of reliability because of longevity and repeated
testing, the extended operating system cannot be
tested completely. With tens of thousands of driv-
ers, operating system vendors cannot even identify
them all, let alone test all possible combinations
used inthe marketplace. In contemporary systems,
any fault in a driver can corrupt vital kernel data,
causing the system to crash.

This chapter presents Nooks, a driver reliabil-
ity subsystem that allows existing device drivers
to execute safely in commodity kernels (Swift,
Bershad & Levy, 2005). Nooks acts as a layer
between drivers and the kernel and provides two
key services: isolation and recovery. Nooks allows
the operating system to tolerate driver failures
by isolating the OS from device drivers. With

16

Device Driver Reliability

Nooks, a bug in a driver cannot corrupt or other-
wise harm the operating system. Nooks contains
driver failures with a new isolation mechanism,
called a lightweight kernel protection domain,
thatisaprivileged kernel-mode environmentwith
restricted write access to kernel memory.

When a driver failure occurs, Nooks detects
the failure with a combination of hardware and
software checksandtriggers automatic recovery. A
new kernelagent, called ashadow driver, conceals
adriver’s failure fromits clients while recovering
fromthe failure (Swiftetal, 2006). During normal
operation, the shadow tracks the state of the real
driver by monitoring all communication between
the kernel and the driver. When a failure occurs,
the shadow inserts itself temporarily in place of
the failed driver, servicing requests on its behalf.
While shielding the kernel and applications from
the failure, the shadow driver restarts the failed
driverand restores it to a state where it can resume
processing requests as if it had never failed.

DEVICE DRIVER OVERVIEW

A device driver is a kernel-mode software com-
ponent that provides an interface between the
OS and a hardware device. In most commodity
operating systems, device drivers execute in the
kernel for two reasons. First, they require privi-
leged access to hardware, such as the ability to
handle interrupts, which is only available in the
kernel. Second, they require high performance,
which is achieved via direct procedure calls into
and out of the kernel.

Driver Software Structure

A driver converts requests from the kernel into
requests to the hardware. Drivers rely on two
interfaces: the interface that drivers export to the
kernel, which provides access to the device, and
the kernel interface that drivers import from the

Device Driver Reliability

operating system. The kernel invokes the func-
tions exported by a driver to requests its services.
Similarly, a driver invokes functions imported
from the kernel to request its services. For ex-
ample, Figure 1(a) shows the kernel calling into a
sound-card driver to play a tone; in response, the
sound driver converts the request into a sequence
of 1/O instructions that direct the sound card to
emit a sound.

In addition to processing 1/O requests, drivers
also handle configuration requests. Configura-
tion requests can change both driver and device
behavior for future 1/0 requests. As examples,
applications may configure the bandwidth of a
network card or the volume of a sound card.

In practice, most device drivers are members
of a class, which is defined by its interface. Code
that can invoke one driver in the class can invoke
any driver in the class. For example, all network
drivers obey the same kernel-driver interface, and

all sound-card drivers obey the same kernel-driver
interface, so no new kernel or application code is
needed to invoke newdriversinthese classes. This
classorientation allows the OS and applications to
be device-independent, as the details of a specific
device are hidden from view in the driver.

In Linux, there are approximately 20 common
classes of drivers. However, not all drivers fit into
classes; adriver may extend the interface foraclass
with proprietary functions, in effect creating anew
sub-class of drivers. Drivers may also define their
own semantics for standard interface functions,
known only toapplications written specifically for
the driver. In this case, the driver is in a class by
itself. In practice, most common drivers, such as
network, sound, and storage drivers, implement
only the standard interfaces.

Device drivers are either request-oriented or
connection-oriented. Request-oriented drivers,
such as network drivers and block storage driv-

Figure 1. (a) a sound device driver, showing the common interface to the kernel and to all sound drivers,

(b) states of a network driver and sound driver

[0OS Kernel]

Kernel Interface

Sound Driver

Sound Card
B —
(@)

init

/ b open

Class Interface send complete
Sound-Card
Device Driver

Network driver

read,write

read,write

Sound-card driver

(b)

17

ers, maintain a single hardware configuration and
process each request independently. In contrast,
connection-oriented drivers maintain separate
hardware and software configurations for each
client of the device. Furthermore, requests on a
single connection may depend on past requests
that changed the connection configuration.

Devices attach to a computer through a bus,
suchasPCI (Peripheral Component Interconnect)
or USB (Universal Serial Bus), which is respon-
sible for detecting attached devices and making
them available to software. When detected, the
operating system locates and loads the appropri-
ate device driver. Communication between the
driver and its device depends on the connection
bus. For PCI devices, the driver communicates
directly with the device through regions of the
computer’s physical address space thatare mapped
onto the PCI bus or through I/O ports. Thus, loads
and stores to these addresses and ports cause
communication with a device. For USB devices,
drivers create request packets that are sent to the
device by the driver for the USB bus.

Most drivers rely on three types of communi-
cation with devices. First, drivers communicate
control information, such as configuration or I/0
commands, through reads and writes to device
registers in ports or 1/0 memory for PCI devices
or through command messages for USB devices.
Device registers are a device’s interface to share
information and to receive commands from a
driver. Second, drivers communicate data through
DMA (Direct Memory Access) by instructing the
device or bus to copy data between the device and
memory; the processor is not involved in copy-
ing, reducing the processing cost of 1/0. Finally,
devices raise interrupts to signal that they need
attention. In response to an interrupt, the kernel
schedulesadriver’sinterrupthandlerto execute. In
most cases, the interrupt signal is level triggered,
in that an interrupt raised by the device is only
lowered when the driver instructs the device to do
s0. Thus, interrupt handling must proceed before
any normal processing, because enabling inter-

18

Device Driver Reliability

rupts in the processor will cause another interrupt
until the driver dismisses the interrupt.

Devicedrivers canbe modeled asabstract state
machines; each input to the driver from the kernel
or output from the driver reflects a potential state
change in the driver. For example, the left side of
Figure 1(b) shows a state machine for a network
driverasitsends packets. The driver beginsinstate
S0, before the driver has been loaded. Once the
driver is loaded and initialized, the driver enters
state S1. Whenthedriver receivesarequestto send
packets, it enters state S2, where there is a packet
outstanding. When the driver notifies the kernel
that the send is complete, it returns to state S1.
The right side of Figure 1(b) shows a similar state
machine for a sound-card driver. This driver may
be opened, configured between multiple states, and
closed. The state-machine model aids indesigning
and understanding a recovery process that seeks
to restore the driver state by clarifying the state
to which the driver is recovering. For example,
a mechanism that unloads a driver after a failure
returns the driver to state SO, while one that also
reloads the driver returns it to state S1.

NOOKS RELIABILITY LAYER

Nooks is a reliability layer that seeks to greatly
enhance OS reliability by isolating the OS from
driver failures. The goal of Nooks is practical:
rather than guaranteeing complete fault tolerance
through a new (and incompatible) OS or driver
architecture, Nooks seeks to prevent the vast
majority of driver-caused crashes with little or no
change to existing driver and system code. Nooks
isolates drivers within lightweight protection
domains inside the kernel address space, where
hardware and software preventthem from corrupt-
ing the kernel. After a driver fails, Nooks invokes
shadow drivers, a recovery subsystem, to recover
by restoring the driver to its pre-failure state.

Device Driver Reliability

Figure 2. The Nooks Isolation Manager as a layer between device drivers and the kernel. The black

lines indicate the minor changes needed to each.

OS Kernel

Nooks
Isolation
Manager

Recovery

Interposition
Isolation =
=== Communication

Device Drivers

=== (Object Tracking fm

Design

Nooks operates as a layer that is inserted between
drivers and the OS kernel. This layer intercepts
all interactions between drivers and the kernel
to facilitate isolation and recovery. Figure 2
shows this new layer, called the Nooks Isolation
Manager (NIM). Above the NIM is the operating
system kernel. The NIM function lines jutting
up into the kernel represent kernel-dependent
modifications, if any, the OS kernel program-
mer makes to insert Nooks into a particular OS.
These modifications need only be made once.
Underneath the NIM is the set of isolated drivers.
The function lines jutting down below the NIM
represent the changes, if any, the driver writer
makesto interface aspecific driver or driver class
to Nooks. In general, no modifications should be
required at this level.

The NIM provides five major architectural
functions, as shown in Figure 2: interposition,
isolation, communication, object tracking, and
recovery.

Interposition
The Nooks interposition mechanisms transpar-

ently integrate existing extensions into the Nooks
environment. Interposition code ensures that: (1)

all driver-to-kernel and kernel-to-driver control
flow occurs through the communication mecha-
nism, and (2) all data transfer between the kernel
and driver is viewed and managed by Nooks’
object-tracking code (described below).

The interface between the extension, the NIM,
and the kernel is provided by a set of wrapper
stubs thatare part of the interposition mechanism.
Wrappers resemble the stubs in an RPC system
that provide transparent control and data transfer
across address space (and machine) boundaries.
Nooks’ stubs provide safe and transparent control
and data transfer between the kernel and driver.
Thus, from the driver’s viewpoint, the stubs ap-
pear to be the kernel’s extension API. From the
kernel’s point of view, the stubs appear to be the
driver’s function entry points.

In addition, wrapper stubs provide support for
recovery. When the driver functions correctly,
wrappers pass information about the state of the
driver to shadow drivers. During recovery, wrap-
pers disable communication between the driver
and the kernel to ensure that the kernel is isolated
from the recovery process.

Isolation

The Nooks isolation mechanisms prevent driver
faults from damaging the kernel (or other isolated

19

drivers). Every driverin Nooks executes within its
own lightweight kernel protection domain. This
domain is an execution context with the same
processor privilege as the kernel but with write
access to a limited portion of the kernel’s address
space. The major task of the isolation mechanism
is protection-domain management. This involves
the creation, manipulation, and maintenance of
lightweight protection domains.

Communication

The Nooks communication mechanisms enable
procedure calls between lightweight protection
domains. Unlike system calls, which are always
initiated by an application, the kernel frequently
calls into drivers. These calls may generate call-
backs into the kernel, which may then generate
a call into the driver, and so on. This complex
communication style is handled by a new kernel
service, called the Extension Procedure Call
(XPC)-acontrol transfer mechanism specifically
tailored to isolating driver within the kernel. An
XPC combines both a protection domain change
and a procedure call. This mechanism resembles
a system call, in that parameters must be verified
on entry to the kernel. However, XPC also occurs
from the kernel into the driver as well.

Object Tracking

Nooks object-tracking functions oversee all kernel
resources used by drivers. In particular, object-
tracking code: (1) maintains a list of kernel data
structures that are manipulated by a driver, (2)
controls all modifications to those structures, and
(3) provides object information for cleanup when
a driver fails. Protection domains prevent drivers
from directly modifying kernel data structures.
Therefore, object-tracking code must copy kernel
objects into a driver domain so they can be modi-
fied and copy them back after changes have been
applied. When possible, object-tracking code veri-
fies the type and accessibility of each parameter

20

Device Driver Reliability

that passes between the driver and kernel. Kernel
routines can then avoid scrutinizing parameters,
executing checks only when called from unreli-
able drivers.

Recovery

Nooks’recovery functions detectand recover from
avariety of driver errors. Nooks detects a software
fault when an extension invokes a kernel service
improperly (e.g., withinvalid arguments) or when
anextension consumestoo many resources. Inthis
case, recovery policy determines whether Nooks
triggers recovery or returns an error code to the
driver, which can already handle the failure of
a kernel function. Triggering recovery prevents
further corruption, but may degrade performance
by recovering more frequently. Nooks detects
a hardware fault when the processor raises an
exception during driver execution, e.g., when a
driver attempts to read unmapped memory or to
write memory outside of its protection domain.
Unmodified driversare unable to handle their own
hardware faults, so in such cases Nooks always
triggers a higher-level recovery.

Nooks relies on shadow drivers to recover
from the failure of a driver. Shadow drivers are a
recovery service that leverage the shared properties
of aclass of drivers for recovery. The architecture
consists of three components: shadow drivers,
taps, and a shadow recovery manager.

Ashadowdriverisakernel agentthat facilitates
recovery for an entire class of device drivers. A
shadow driver instance isarunning shadow driver
that recovers for a single, specific driver. The
shadow instance compensates for and recovers
from a driver that has failed. When a driver fails,
itsshadow restoresthe drivertoits pre-failure state.
This allows, for example, the recovered driver to
complete requests made before the failure.

Device Driver Reliability

Figure 3. Control flow of driver and kernel wrappers

Implementation

Nooks was implemented within the Linux 2.4.18
kernel on the Intel x86 architecture. The kernel
provides over 700 functions callable by drivers
and other extensions and more than 650 extension-
entry functions callable by the kernel. Moreover,
few data types are abstracted, and drivers directly
access fields in many kernel data structures.

The Linux kernel supports standard interfaces
for many extension classes. For example, there
is a generic interface for block, character, and
network device drivers. The interfaces are imple-
mented as C language structures containing a set
of function pointers.

Most interactions between the kernel and
drivers take place through function calls, either
from the kernel into drivers or from drivers into
exported kernel routines. Drivers directly ac-
cess only a few global data structures, such as
the current task structure As a result, Nooks can
interpose on most kernel-driver interactions by
intercepting the function calls between the driver
and kernel.

Interposition

Interpositionallows Nookstointerceptand control
communication between drivers and the kernel.
Nooksinterposes on kernel-driver control transfers
withwrapper stubs. Wrappers provide transparency

by preserving existing kernel-driver procedure-
call interfaces while enabling the protection of all
control and data transfers in both directions.

When loadingamodule, Nooks links the driver
against wrappers rather than to normal kernel
functions. This ensures that Nooks intercepts
all function calls from the driver into the kernel.
Similarly, the kernel’s module initialization code
explicitly invokes a Nooks wrapper on the initial-
ization call into a driver, enabling the driver to
execute within its lightweight protection domain.
Followinginitialization, wrappersreplace all func-
tion pointers passed from the driver to the kernel
with pointers to other wrappers. This causes the
kernel to call wrapper functions instead of driver
functions directly.

In addition to interposing on control transfers,
Nooks must interpose on some data references.
Drivers are linked directly to global kernel vari-
ables that they read but do not write (e.g., the
current time). For global variables that drivers
modify, Nooks creates a shadow copy of the
kernel data structure within the driver’s domain
that is synchronized to the kernel’s version. For
example, Nooks uses this technique for the queue
of packets sent and received by a network driver.
The objecttracker synchronizes the contents ofthe
kernel and driver version of this structure before
and after XPCs into a network driver.

As noted above, Nooks inserts wrapper stubs
between kernel and driver functions. There are

21

Device Driver Reliability

Figure 4. Protection of the kernel address space. Drivers can read and write their private heap and

stacks, but only read from the kernel.

Driver 1: R

Driver 2: R

Kernel: R/'W

Driver 1

Driver 1: RIW Driver 1: R

Driver 2: R | Heap | ’Slacksl I Heap l |STBC"3 | Driver 2: R'W
Kernel: R'W Vo o Kernel: R'W

Buffers Buffers

two types of wrappers: kernel wrappers, which
are called by drivers to execute kernel-supplied
functions; driver wrappers, which are called by
the kernel to execute driver-supplied functions. In
both cases, a wrapper functions as an XPC stub
that appears to the caller as if it were the target
procedure in the called domain.

Both wrapper types perform the body of their
work within the kernel protection domain. There-
fore, the domain change occurs ata different point
depending on the direction of transfer, as shown
in Figure 3. When a driver calls a kernel wrapper,
the wrapper performs an XPC on entry so that the
body of the wrapper (i.e., object checking, copying,
etc.) can execute in the kernel’s domain. Once the
wrapper’s work is done, it calls the target kernel
function directly with a regular procedure call.
In the opposite direction, when the kernel calls a
driver wrapper, the wrapper executes within the
kernel’s domain. When it is done, the wrapper
performs an XPC to transfer to the target function
within the driver.

Wrappers perform four basic tasks. First, wrap-
pers implement the shadow driver tap mechanism
(described later inthis chapter). Second, wrappers
check parameters for validity by verifyingwith the
object tracker and memory manager that pointers
are valid. Third, they implement call-by-value-
result semantics for XPC, by creating a copy of
kernel objects on the local heap or stack within

22

the driver’s protection domain. These semantics
ensure that updates to kernel objects are trans-
actional, because they are only applied after the
driver completes, when the wrappers copy the
results back to the kernel. Fourth, wrappers per-
form an XPC into the kernel or driver to execute
the desired function, as shown in Figure 3.

While wrappers must copy data between pro-
tection domains, no marshaling or unmarshaling
is necessary, because the driver and kernel share
the same address space. Instead, wrappers may
directly allocate and reference memory in either
the kernel or the driver protection domains. The
code for synchronizing simple objects is placed
directly in the wrappers, while the object tracker
provides synchronization routines for complex
objects with many pointers. As an optimization,
wrappers may pass parameters that are only read
but not written by drivers without modification,
asany attempt to modify the parameter will cause
a memory access fault.

Toimprove performance, the wrappers rely on
several techniques for moving complex objects
between protection domains. Insome cases, Nooks
copiesobjects into the driver’s protectiondomain,
following embedded pointers as appropriate. It
is generally unnecessary to copy the complete
transitive closure of an object; while drivers
read pointers more than one level removed from
a parameter, they generally do not write to them.

Device Driver Reliability

In other cases, Nooks avoids copying entirely by
changing the protection on the page containing
an object. A “page tracker” mechanism within the
objecttracker remembers the state of these mapped
pages and grants and revokes driver access to the
pages. Nooks uses this mechanism to avoid copy-
ing network packets and disk blocks.

Writing a wrapper requires knowing how
drivers use a parameter: whether it is live across
multiple calls to the drivers, whether it can be
passed to other threads or back to the kernel, and
which fields of the parameter can be modified.
Thisanalysis canbe manual or performed by static
analysis tools that determine these properties by
analyzing an existing set of drivers.

Isolation

The isolation component of Nooks provides
memory management to implement lightweight
kernel protection domains with virtual memory
protection.

Figure 4 shows the Linux kernel with two
lightweight kernel protection domains, each con-
taining a single driver. All components exist in the
kernel’s address space. However, memory access
rights differ for each component: e.g., the kernel
has read-write access to the entire address space,
while each driver is restricted to read-only kernel
access and read-write access to its local domain.

To provide drivers with read access to the ker-
nel, Nooks” memory management code maintainsa
synchronized copy of the kernel page table foreach
domain. Each lightweight protection domain has
private structures, including adomain-local heap,
a pool of stacks for use by the driver, memory-
mapped physical 1/0 regions, and kernel memory
buffers, such as socket buffers or 1/0 blocks, that
are currently in use by the driver.

Nooks protects against bugs but not against
malicious code. Lightweight protection domains
reflect this design. For example, Nooks prevents
a driver from writing kernel memory, but it does
not prevent a malicious driver from replacing the

domain-local page table explicitly by reloading
the hardware page table base register.

Furthermore, Nooks currently does not protect
the kernel from Direct Memory Access (DMA) by
a device into the kernel address space. Isolation
is provided through virtual memory page tables,
but devices use DMA to directly access physical
memory. Preventing arogue DMArequiresan 10
memory managementunit (IOMMU), whichisnot
common on PC-class x86 computers. However,
Nooks tracks the set of pages writable by a driver
and could use this information to restrict DMAon
a machine with the suitable hardware support.

Communication

Nooks uses the extension procedure call (XPC)
mechanism to transfer control between driver and
kernel domains. The wrapper mechanism makes
the XPC mechanism invisible to both the kernel
and drivers, which continue to interact through
their original procedural interfaces.

Two functions internal to Nooks manage XPC
control transfer: one to transfer from the kernel
into a driver, and one to transfer from drivers into
the kernel. These functions take a function pointer,
an argument list, and a protection domain. They
execute the function with its arguments in the
specified domain. The transfer routines save the
caller’s context on the stack, find a stack for the
calling domain (which may be newly allocated or
reused when calls are nested), change page tables
to the target domain, and then call the function.
XPC performs the reverse operations when the
call returns.

Changing protection domainsrequiresachange
of page tables. The Intel x86 architecture flushes
the TLB on such a change, and hence there is a
substantial costto enteringalightweight protection
domain, both from the flush and from subsequent
TLB misses. This cost could be mitigated in a
processor architecture with atagged TLB, suchas
the MIPS or Alpha, or with single-address-space
protectionsupport, such asthe IA-64 or PA-RISC.

23

However, because Nooks’ lightweight protection
domains execute on kernel threads that share the
kernel address space, they reduce the costs of
scheduling and data copying on a domain change
when compared to normal cross-address space or
kernel-user RPCs.

Toreduce the performance cost of XPC, Nooks
supports deferred calls, which batch many calls
into a single domain crossing. Nooks can defer
function calls that have no visible side effects to
the call. Wrappers queue deferred function calls
for later execution, either at the entry or exit of a
future XPC. Each domain maintains two queues:
adriver-domain queue holds delayed kernel calls,
and a kernel-domain queue holds delayed driver
calls. As an example, Nooks changes the packet-
delivery routine used by the network driver to
batch the transfer of message packets from the
driver to the kernel. When a packet arrives, the
driver calls a wrapper to pass the packet to the
kernel. The wrapper queues a deferred XPC to
deliver the packet after the driver completes
interrupt processing.

Object Tracking

The objecttracker facilitates the recovery of kernel
objects following a driver failure. The Nooks ob-
jecttracker performstwo independent tasks. First,
it records the addresses of all objects in use by a
driver in a database. As an optimization, objects
used only for the duration of asingle XPC call are
recorded on the kernel stack. Objects with long
lifetimes are recorded in a per-protection-domain
hash table. Second, for objects that drivers may
modify, the object tracker creates and manages
a driver version of the object and records an as-
sociation between the kernel and driver versions.
Wrappers rely on this association to map param-
eters between the driver’s protection domain and
the kernel’s protection domain.

The Nooks implementation supports many
kernel object types, such as tasklets, PCI devices,
inodes, and memory pages. For each of the 52

24

Device Driver Reliability

object types used by drivers, there is a unique
type identifier and code to release instances of
that type during recovery. Complex types also
have a routine to copy changes between a kernel
and driver instance of the type.

When an object “dies” and is no longer usable
by a driver, the object tracker must remove the
object from its database. Determining when an
object will no longer be used requires a careful
examination of the kernel-driver interface. This
task is possible because the kernel requires the
same information to safely reclaim shared objects.
For example, some objects are accessible to the
driver only during the lifetime of a single XPC
call from the kernel. In this case, Nooks adds
the object to the tracker’s database when the call
begins and removes it on return. Other objects
are explicitly allocated and deallocated by the
driver, in which case Nooks knows their lifetimes
exactly. In still other cases, Nooks relies in the
semantics of the object and its use. For example,
drivers allocate a timer data structure to register
for a future callback. Nooks adds this object to
the object tracker when a driver calls the kernel
to add the timer and removes it when the timer
fires, at which point it is no longer used. The
object-tracking code is conservative, in that it
may under-estimate the lifetime of an object and
unnecessarily add and remove the same object
from the database multiple times. It will not,
however, allow a driver to access an object that
the kernel has released.

In addition to tracking objects in use by driv-
ers, the tracker must record the status of locks that
are shared with the kernel. When a driver fails,
Nooks releases all locks acquired by the driver
to prevent the system from hanging. As a result,
callsto lock kernel data structures require an XPC
into the kernel toacquire the lock, synchronize the
kernel and driver versions of the data structure,
and record that the lock was acquired.

Device Driver Reliability

Recovery

The recovery code in Nooks consists of three
components. First, the isolation components detect
driver failures and notify the controller. Second,
the object tracker and protection domains support
cleanup operations that release the resources in
use by a driver. This functionality is available to
the third component, a recovery manager, whose
job is to recover after a failure. The recovery
manager may be customized to a specific driver
or class of drivers.

Failure Detection

Nooks triggers recovery when it detects a failure
through software checks (e.g., parameter valida-
tion or livelock detection), processor exceptions,
or notification from an external source. Specifi-
cally, the wrappers, protection domains, and object
tracker notify the Nooks isolation manager of a
failure when:

* The driver passes a bad parameter to the
kernel, such as accessing a resource it had
freed or unlocking a lock not held.

« The driver allocates too much memory,
such as an amount exceeding the physical
memory in the computer.

» The driver executes too frequently without
an intervening clock interrupt (implying
livelock).

» The driver generates an invalid processor
exception, such as an illegal memory ac-
cess or an invalid instruction.

In addition, it is possible to implement an
external failure detector, such as a user- or kernel-
mode agent, that notifies the controller ofafailure.
In all cases, the controller invokes the driver’s
recovery manager.

Recovery Managers
The recovery manager is tasked with returning
the system to a functioning state. Nooks supports

three recovery managers. The default recovery
manager is a kernel service that simply unloads
the failed driver, leaving the system running but
without the services of the driver. The restart
recovery manager is a user-mode agent that simi-
larly unloads the failed driver but then executes a
script to reload and restart the driver. The shadow
recovery manager performs complete recovery
in the kernel, oblivious to applications and the
kernel itself. Shadow driver recovery is described
in more detail in the next section.

The XPC, object tracking, and protection do-
main code all provide interfaces to the recovery
managers. The XPC service allows a manager to
signal all the threads that are currently executing
in the driver or have called through the driver
and back into the kernel. The signal causes the
threads to unwind out of the driver by returning
tothe point where they invoked the driver without
executing any additional driver code.

The object tracker provides an interface to
recovery managers to enumerate the objects inuse
by a driver at the time of failure and to garbage
collectthe objects by releasing them to the kernel.
The manager may choose both the set of objects
it releases and the order in which to release them.
Thus, it may preserve objects for use by the driver
after recovery, such as memory-mapped 1/O buf-
fers that a hardware device continues to access.

Lightweightkernel protection domains provide
similar support for recovery. The domains record
the memory regions accessible to a driver and
provide interfaces for enumerating the regions
and for releasing the regions to the kernel.

Summary of Nooks

Device drivers are a major source of failure in
modern operating systems. Nooks is a new re-
liability layer intended to significantly reduce
driver-related failures. Nooks isolates drivers in
lightweight kernel protection domains and relies
on hardware and software checksto detect failures.
After a failure, Nooks recovers by unloading and

25

then reloading the failed driver. Nooks focuses
on achieving backward compatibility, that is, it
sacrifices complete isolation and fault tolerance
for compatibility and transparency with existing
kernelsand drivers. As aresult, Nooks has the po-
tential to greatly improve the reliability of today’s
operating systems by removing their dependence
on driver correctness.

Shadow Driver Recovery

Isolation techniques can reduce the frequency
of system crashes, but applications using the
failed driver may continue to crash. Applications
receive erroneous results following a failure, and
the driver loses application state when it restarts.
Most applications are unprepared to cope with
either situation. Rather, applications reflect the
conventional failure model: drivers and the oper-
ating system either fail together or not at all. The
restart recovery manager recovers from driver
failure by unloading and then reloading the failed
driver. However, reloading failed drivers is effec-
tive at preventing system crashes. However, users
of acomputer are not solely interested in whether
the operating system continues to function. Of-
ten, users care more about the applications with
which they interact. If applications using drivers
fail, then I have only partially achieved my goal
of improving reliability.

With the restart recovery manager, calls into
adriver that fails and subsequently recovers may
return error codes because the recovery manager
unloads the driver and invalidates open connec-
tions to the driver during recovery. As a result,
clients of a recovered driver would themselves
fail if they depend on the driver during or after
recovery. For example, audio players stopped
producing sound when a sound-card driver failed
and recovered. For the same reason, the restart
recovery manager cannot restart drivers needed
by the kernel, such as disk drivers. Requests to
the disk driver fail while the driver is recovering.
When the Linux kernel receives multiple errors

26

Device Driver Reliability

from a disk driver used for swapping, it assumes
that the device is faulty and crashes the system.

In addition, any settings an application or the
OS had downloaded into a driver are lost when
the driver restarts. Thus, even if the application
reconnects to the driver, the driver may not be
able to process requests correctly.

These weaknesses highlight a fundamental
problem with a recovery strategy that reveals
driver failures to their clients: the clients may
not be prepared to handle these failures. Rather,
they are designed for the more common case that
either drivers never fail, or, if they fail, the whole
system fails.

To address these problems, shadow drivers
are a transparent recovery mechanism for driver
failures. Their design for shadows reflects three
principles:

. Device driver failures should be concealed
from the driver’s clients. If the operating
system and applications using a driver can-
not detect that it has failed, they are unlike-
ly to fail themselves.

« Driver recovery logic should be generic.
Given the huge number and variety of de-
vice drivers, it is not practical to implement
per-driver recovery code. Therefore, the
architecture must enable a single shadow
driver to handle recovery for a large num-
ber of device drivers.

. Recovery services should have low over-
head when not needed. The recovery sys-
tem should impose relatively little over-
head for the common case (that is, when
drivers are operating normally).

Overall, these design principles aim to protect
applications and the OS from driver failure, while
minimizing the cost required to make and use
shadow drivers.

Shadow drivers only apply to device driv-
ers that belong to a class and share a common
calling interface. They recover after a failure by

Device Driver Reliability

restarting the driver and replaying past requests
and hence, can only recover from failures that are
bothtransientand fail-stop. Deterministic failures
may recur whenthe driver recovers, again causing
a failure. Recoverable failures must be fail-stop,
because shadow drivers must detect a failure in
order to conceal it from the OS and applications.
Hence, shadow drivers require an isolation sub-
system to detect and stop failures before they are
visible to applications or the operating system.

Shadow Driver Operation

Shadow drivers execute in one of two modes: pas-
sive or active. Passive mode is used during normal
(non-faulting) operation, when the shadow driver
monitors all communication between the kernel
and the device driver it shadows. This monitoring
is achieved via replicated procedure calls, called
taps: akernel call to adevice driver function causes
an automatic, identical call to the corresponding
shadow driver function. Similarly, adriver call to
a kernel function causes an automatic, identical
call to a corresponding shadow driver function.
These passive-mode calls are transparent to the
devicedriverandthe kernel and occur only to track
the state of the driver as necessary for recovery.
Based on the calls, the shadow tracks the state
transitions of the shadowed device driver.

Active mode is used during recovery from a
failure. Here, the shadow performs two functions.
First, it impersonates the failed driver, intercept-
ing and responding to calls for service. Therefore,
the kernel and higher-level applications continue
operating as though the driver had not failed. Sec-
ond, the shadow driver restarts the failed driver
and brings it back to its pre-failure state. While
the driver restarts, the shadow impersonates the
kernel to the driver, responding to its requests
for service. Together, these two functions hide
recovery from the driver, which is unaware that
a shadow driver is restarting it after a failure, and
from the kernel and applications, which continue
to receive service from the shadow.

Once the driver has restarted, the active-mode
shadow returns the driver to its pre-failure state.
For example, the shadow re-establishes any
configuration state and then replays pending re-
quests. Shadow drivers rely on the state machine
model of drivers. Whereas the default and restart
recovery managers seek to restore the driver to
its unloaded state or initialized state, shadow
drivers seek to restore drivers to their state at the
time of failure.

Ashadow driver is a class driver, aware of the
interface to the drivers it shadows but not of their
implementations. The class orientation has two
key implications. First, a single shadow driver
implementation can recover from a failure of any
driver in its class, meaning that a handful of dif-
ferent shadow drivers can serve a large number of
device drivers. As previously mentioned, Linux,
for example, has only 20 driver classes. Second,
implementing a shadow driver does not require
a detailed understanding of the internals of the
drivers it shadows. Rather, it requires only an
understanding of those drivers’ interactions with
the kernel. Thus, they can be implemented by
kernel developers with no knowledge of device
specifics and have no dependencies on individual
drivers. For example, if a new network interface
card and driver are inserted into a PC, the exist-
ing network shadow driver can shadow the new
driver without change. Similarly, drivers can be
patched or updated without requiring changes to
their shadows.

Taps

As previously described, a shadow driver moni-
tors communication between a functioning driver
and the kernel and impersonates one to the other
during failure and recovery. This is made possible
by a new mechanism, called a tap. Conceptually,
a tap is a T-junction placed between the kernel
and its drivers. It is implemented as a callout
from wrapper stubs. During a shadow’s passive-
mode operation, the tap: (1) invokes the original

27

Device Driver Reliability

Figure 5. (a) A sample shadow driver operating in passive mode. (b) A sample shadow driver operating

in active mode.

0S Kernel

Kernel Interface

Shadow
Sound
Driver

Sound-Card
Device Driver

Y

| Sound Card .

(a)

driver, and then (2) invokes the corresponding
shadow with the parameters and results of the
call, as shown in Figure 5(a). In active mode, a
tap always invokes the shadow driver, as shown
in Figure 5(b).

The Shadow Recovery Manager

The shadow recovery manager is responsible for
coordinating recovery with shadow drivers. The
Nooks Isolation Manager notifies the shadow
recovery manager that it has detected a failure
in a driver. The shadow recovery manager then
transitions the shadow driver to active mode and
closes the taps. In this way, requests for the driv-
er’s services are redirected to the corresponding
shadow driver. The shadow recovery manager then
initiates the shadow driver’s recovery sequence
to restore the driver. When recovery completes,
the shadow recovery manager returns the shadow
driver to passive-mode operation and re-opens its
taps so that the driver can resume service.

28

0S Kernel

Kernel Interface

:

Taps
Shadow
Sound
Driver

Sound-Card
Device Driver

Y

| Sound Card I

(b)

Shadow Drivers

Each shadow driver is a single module written
with knowledge of the behavior (interface) of a
class of device drivers, allowing it to conceal a
driver failure and restart the driver after a failure.
A shadow driver, when passive, monitors com-
munication between the kernel and the driver. It
becomes active when a driver fails and then both
proxies requests for the driver and restores the
driver’s state.

Passive-Mode Monitoring

In passive mode, a shadow driver monitors the
current state of a device driver by observing its
communication with the kernel. Inorder toreturn
the driver to its state at the time of failure, the
shadow records the inputs to the driver in a log.
These inputs are then replayed during recovery.
With no knowledge of how drivers operate, the
shadow would have to log all inputs to the driver.
However, because the shadow is implemented
with knowledge of the driver’s interface, and

Device Driver Reliability

Figure 6. The State machine transitions for a sound-card shadow driver. Those recorded for recovery

are shown in boldface.

2: ioctl-1

hence its abstract state machine, not all inputs
mustbe logged. Instead, the shadow only records
inputs needed to return a driver to its state at
the time of failure. The shadow drops requests
that do not advance the driver’s state or whose
impact has been superseded by later inputs, for
example transitions on a loop in the abstract
state machine.

Figure 6 shows an example of the state ma-
chine transitions for a sound-card driver. The
transitions, made when the kernel issues requests
to the driver, are numbered. The final state of the
sequence is S4, but there is a loop through state
S3. As a result, the shadow may drop requests 2
through 5 from its log, because they do not affect
the final state of the driver.

To implement this state machine, the shadow
driver maintains a log in which it records several
types of information. First, it tracks 1/O requests
made to the driver, enabling pending requests to
be re-submitted after recovery. An entry remains
inthe log until the corresponding request has been
handled. Inaddition, for connection-oriented driv-
ers, the shadow driver records the state of each
active connection, such as offset or positioning
information.

The shadow driver also records configuration
and driver parameters that the kernel passes into
the driver. The shadow relies on this information
to reconfigure the driver to its pre-failure state
during recovery. For example, the shadow sound-

3: write

4:joctl-2
5:ioctl-reset

6: ioctl-2

carddriver logsioctl calls (command numbersand
arguments) that configure the driver.

For stateful devices, such as a hard disk, the
shadow does not create a copy of the device state.
Instead, a shadow driver depends on the fail-stop
assumption to preserve persistent state (e.g., on
disk) from corruption. In other cases, the shadow
may be able to force the device’sclientstorecreate
the state after a failure. For example, awindowing
system can recreate the contents of a frame buffer
by redrawing the desktop.

In many cases, passive-mode calls do no work
and the shadow returns immediately to the caller.
For example, the kernel maintains a queue of
outstanding requests to a disk driver, and hence
the shadow driver for an IDE disk does little in
passive mode. For the network shadow driver, too,
the Nooks object-tracking system performs much
of the work to capture driver state by recording
outstanding packets.

Opaque parameters can pose problems for
recovery as they did for isolation. However, the
class-based approach allows shadow drivers to
interpret most opaque pointers. The standardized
interface to drivers ensures that a client of the
interface that has no knowledge of a driver’s
implementation canstill invoke it. Hence, clients
must know the real type of opaque parameters.
The shadow implementer can use the same
knowledge to interpret them. For example, the
Linux Open Sound System interface defines

29

opaque pointer parameters to the ioctl call for
sound-card drivers. The shadow sound-card
driver relies on this standard to interpret and
log ioctl requests.

Active-Mode Recovery

The shadow enters active mode when a failure
is detected in a driver. A driver typically fails by
generating an illegal memory reference or pass-
ing an invalid parameter across a kernel interface.
Nooks’ failure detectors notice the failure and
notify the Nooks Isolation Manager, which in
turn invokes the shadow recovery manager. This
manager immediately locates the corresponding
shadow driver and directs it to recover the failed
driver. The shadow driver’s task is to restore the
driver to the state it was in at the time of failure, so
itcan continue processing requestsas if ithad never
failed. Thethree steps of recoveryare: (1) stopping
the failed driver, (2) reinitializing the driver from
aclean state, and (3) transferring relevant shadow
driver state into the new driver. Unlike Nooks’
restart recovery manager, a shadow driver does
not completely unload the failed driver.

Stopping the Failed Driver

The shadow recovery manager begins recovery
by informing the responsible shadow driver that
a failure has occurred. It also closes the taps,
isolating the kernel and driver from one another’s
subsequent activity during recovery. After this
point, the tap redirects all kernel requests to the
shadow until recovery is complete.

Informed of the failure, the shadow driver first
invokes the isolation service to preempt threads
executing in the failed driver. It also disables the
hardware device to prevent it from interfering
with the OS while not under driver control. For
example, the shadow disables the driver’s interrupt
request line. Otherwise, the device may continu-
ously interruptthe kernel and preventrecovery. On
hardware platforms with 1/O memory mapping, the
shadow also removes the device’s 1/0 mappings
to prevent DMAs into kernel memory.

30

Device Driver Reliability

In preparation for recovery, the shadow garbage
collects resources held by the driver. To ensure
that the kernel does not see the driver “disappear”
as it is restarted, the shadow retains objects that
the kernel uses to request driver services. For
example, the shadow does not release the device
object for network device drivers. The remaining
resources, not needed for recovery, are released.

Reinitializing the Driver

The shadow driver next “boots” the driver from
a clean state. Normally, booting a driver requires
loading the driver from disk. However, the disk
driver may not be functional during recovery.
Hence, the driver code and data must already be
inmemory beforeafailure occurs. For thisreason,
the shadow caches a copy of the device driver’s
initial, clean data section when the driver is first
loaded. These data sections tend to be small. The
driver’s code is already loaded read-only in the
kernel, so it can be reused from memory.

The shadow boots the driver by repeating
the sequence of calls that the kernel makes to
initialize a driver. For some driver classes, such
as sound-card drivers, this consists of a single
call into the driver’s initialization routine. Other
drivers, such as network interface drivers, require
additional calls to connect the driver into the
network stack.

Asthedriver restarts, the shadow reattaches the
driver to the kernel resources it was using before
the failure. For example, when the driver calls the
kernel toregister itselfasadriver, the taps redirect
these calls to the shadow driver, which reconnects
the driver to existing kernel data structures. The
shadow reuses the existing driver registration,
passing it back to the driver. For requests that
generate callbacks, such as a request to register
the driver with the PCI subsystem, the shadow
emulates the kernel and calls the driver back in
the kernel’s place. The shadow also provides
the driver with its hardware resources, such as
interrupt request lines and memory-mapped 1/0
regions. Ifthe shadow had disabled these resources

Device Driver Reliability

inthe first step of recovery, the shadow re-enables
them, e.g., enabling interrupt handling for the
device’s interrupt line. In essence, the shadow
driver initializes the recovering driver by calling
and responding as the kernel would when the
driver starts normally.

Transferring State to the New Driver

The final recovery step restores the driver to the
state it was in at the time of the failure, permit-
ting it to respond to requests as if it had never
failed. Thus, any configuration that either the
kernel or an application had downloaded to the
driver must be restored. The shadow driver walks
its log and issues requests to the driver that to
restore its state.

The details of this final state transfer depend
on the device driver class. Some drivers are con-
nection oriented. For these, the state consists of
the state of the connections before the failure. The
shadow re-opens the connections and restores the
state of each active connection with configura-
tion calls. Other drivers are request oriented. For
these, the shadow restores the state of the driver
by replaying logged configuration operations and
then resubmitsto the driver any requests that were
outstanding when the driver crashed.

As an example, to restart a sound-card driver,
the shadow driver resets the driver and all its
open connections back to their pre-failure state.
Specifically, the shadow scans its list of open
connections and calls the open function in the
driver to reopen each connection. The shadow
then walks its log of configuration commands
for each connection and replays commands that
set driver properties.

For some driver classes, the shadow can-
not completely transfer its state into the driver.
However, it may be possible to compensate in
other, perhaps less elegant, ways. For example,
asound-card driver that is recording sound stores
the number of bytes it has recorded since the last
reset. After recovery, the sound-card driver ini-
tializes this counter to zero. Because the interface

has no call that sets the counter value, the shadow
driver must insert its “true” value into the return
argument list whenever the application reads the
counter to maintain the illusion that the driver
has not crashed. The shadow can do this because
it receives control (on its replicated call) before
the kernel returns to user space.

After resetting driver and connection state,
the shadow must handle requests that were either
outstanding when the driver crashed or arrived
while the driver was recovering. If a driver
crashes after submitting a request to a device
but before notifying the kernel that the request
has completed, the shadow cannot know whether
the device completed the request. As a result,
shadow drivers cannot guarantee exactly once
behavior and must rely on devices and higher
levels of software to absorb duplicate requests.
So, the shadow driver has two choices during
recovery: restart in-progress requests and risk
duplication, or cancel the request and risk lost
data. For some device classes, such as disks or
networks, duplication is acceptable. However,
other classes, such as printers, may not tolerate
duplicates. In these cases, the shadow driver can-
cels outstanding requests and returns an error to
the kernel or application in a manner consistent
with the driver interface.

After this final step, the driver has been re-
initialized, linked into the kernel, reloaded with
its pre-failure state, and is ready to process com-
mands. At this point, the shadow driver notifies
the shadow recovery manager, which sets the
taps to restore kernel-driver communication and
reestablish passive-mode monitoring.

Active-Mode Proxying of Kernel Requests

While a shadow driver is restoring a failed driver,
itisalso acting as a proxy for the driver to conceal
the failure and recovery from applications and
the kernel. Thus, the shadow must respond to
any request for the driver’s service in a way that
satisfies and does not corrupt the driver’s caller.
The shadow’s response depends on the driver’s

31

Device Driver Reliability

Table 1. The proxying actions of the shadow sound-card driver.

Request Action
read / write suspend caller
interrupt drop request

query capability ioctl

answer from log

query buffer ioctl

act busy

reset ioctl

queue for later / drop duplicate

interface and the request semantics. In general,
the shadow will take one of five actions:

1. Respondwithinformationthatithasrecorded
in its log.

2. Reportthatthedriverisbusy andthatthe ker-
nel or application should try again later.

3. Suspendtherequestingthread until thedriver
recovers.

4. Queue the request for processing after re-
covery and return success.

5. Silently drop the request.

The choice of strategy depends on the caller’s
expectations of the driver.

Writing the proxying code requires knowledge
of the kernel-driver interface, its interactions, and
its requirements. For example, the kernel may
require that some driver functions never block,
while others always block. Some kernel requests
are idempotent (e.g., many ioctl commands), per-
mitting duplicate requests to be dropped, while
others return different results on every call (e.g.,
many read requests). The writer of a shadow for
a driver class uses these requirements to select
the response strategy.

Devicedrivers often support the concept of be-
ing “busy.” Thisconceptallows adriver to manage
the speed difference between software running
on the computer and the device. For example,
network drivers in Linux may reject requests and
turn themselves off if packets are arriving from
the kernel to quickly and their queues are full. The
kernel thenrefrains from sending packets until the

32

driver turns itself back on. The notion of being
“busy” inadriver interface simplifies active proxy-
ing. By reporting that the device is currently busy,
shadow drivers instruct the kernel or application
to block calls to a driver. The shadow network
driver exploits this behavior during recovery by
returning a “busy” error on calls to send packets.
IDE storage drivers supportasimilar notion when
request queues are full. Sound drivers can report
that their buffers are temporarily full.

The shadow sound-card driver uses a mix of
all five strategies for proxying functions in its
service interface. Table 1 shows the shadow’s
actions for common requests. The shadow sus-
pends kernel read and write requests, which play
and record sound samples, until the failed driver
recovers. It processes ioctl calls itself, either by
responding with information it captured or by
logging the request to be processed later. For ioctl
commands thatare idempotent, the shadow driver
silently drops duplicate requests. Finally, when
applications query for buffer space, the shadow
responds that buffers are full. As a result, many
applications block themselves rather than blocking
in the shadow driver.

Shadow Driver Summary

Shadow drivers provide an elegant mechanism
that leverages the properties of device drivers
for recovery. Based on an abstract state machine
modeling an entire class of drivers, shadow
drivers monitor the communication between the
kernel and driver to obtain the driver state dur-

Device Driver Reliability

Table 2. The number of non-comment lines of source code in Nooks and Shadow Drivers.

Nooks Components # Lines
Domain Management 2,391
Object Tracking 1,498
Extension Procedure Call 928
Wrappers 14,484
Recovery 1,849
Build tools 1,762
Linux Kernel Changes 924
Miscellaneous 1,629

Shadow driver components # Lines
Shadow recover manager 600
Tap-generation tools 750
Shared shadow driver code 750
Sound shadow driver 666
Network shadow driver 198
Storage shadow driver 321

Total number of lines of code 28,800

ing normal operation. When a driver fails, the
shadow relies on this state to conceal the failure
by proxying for the driver. At the same time, the
shadow recovers by restarting the driver, and
then replaying requests to bring the driver back
to its pre-failure state.

EVALUATION OF NOOKS
AND SHADOW DRIVERS

Any new operating system mechanism must be
evaluated according to the increase in complexity
itaddsto the systemrelative the benefit it provides
and its performance.

Code Size and Complexity

Table 2 shows the size of the Nooks and shadow
driver implementation. This code can tolerate
the failure of fourteen device drivers. The Nooks
reliability layer comprises less than 26,000 lines
of code.

Shadow drivers have been implemented for
three classes of device drivers: sound-card driv-
ers, network interface drivers, and IDE storage
drivers. Table 2 shows, for each class, the size in
lines of code unique to the shadow driver for the
class. Ofthe 177 taps, only 31 required actual code
in a shadow; the remainder were no-ops because
the calls did not significantly impact kernel or
driver state.

In contrast, the kernel itself has 2.4 million
lines, and the Linux 2.4 distribution has about
30 million. For comparison, the Linux 2.4.18
kernel includes 118,981 lines of sound driver
code, 264,500 lines of network driver code, and
29,000 lines of IDE storage code. Relative to a
base kernel and its drivers, the Nooks reliability
layer introduces only a modest amount of addi-
tional system complexity. This demonstrates the
leverage that Nooks and shadow drivers provide
by implementing fault tolerance for amuch larger
body of driver code.

33

Device Driver Reliability

Figure 7. The reduction in system crashes observed using Nooks.

System Crashes

152

160
ONative BNooks
119
& 120
=
w
o
(3]
%5 80
@
'E 52
=
3 40
10 5
0 0 0
0 . T T
sb e1000 pchet32 ide-disk

Driver under test

Reliability

The primary goal of Nooks and shadow drivers
is to improve the reliability of an operating sys-
tem and applications. This section evaluates the
ability of Nooks and shadow drivers to tolerate
driver failures. Inthe experiments reported below,
Nooks is used to isolate three classes of device
drivers: network, sound card, and IDE storage
drivers. Reliability and performance results for
five representatives of the three driver classes are
presented: sb (SoundBlaster 16 sound card), au-
digy (SoundBlaster Audigy sound card), pcnet32
(AMD PCnet32 10/100 Ethernet card), 1000
(Intel Pro/1000 Gigabit Ethernet card), and ide-
disk (IDE disk driver).

Three platforms are used to evaluate Nooks
and shadow drivers, all based on the Linux 2.4.18
kernel:

1. Linux-Native is the unmodified Linux
kernel.

2. Linux-Nooksisaversion of Linux-Native that
includesthe Nooks faultisolation subsystem
and the restart recovery manager. When a
driver fails, this system restarts the driver
but does not attempt to conceal its failure.

34

3. Linux-SDincludes Nooks, the shadow driver
recovery manager, and the three shadow
drivers.

Nooks was tested with synthetic fault injec-
tion to insert artificial faults into drivers. The
fault injector automatically changes single
instructions in driver code to emulate a vari-
ety of common programming errors, such as
uninitialized local variables, bad parameters,
and inverted test conditions. The output of the
fault injection tests is a metric of coverage,
not reliability. The tests measure the fraction
of faults (failure causes) that can be detected
andisolated, not the fraction of existing failures
that can be tolerated.

System Survival

Thissection evaluates Nooks’ ability to isolate the
kernel from driver failure. The goal of these tests
is to measure the survival rate of the operating
system. The application-level workload consists
of programs that stress the sound-card driver,
the network driver, and the storage driver. The
first program plays a short MP3 file. The second
performs a series of ICMP-ping and TCP stream-

Device Driver Reliability

Table 3. The applications used for evaluating shadow drivers.

Device Driver

Application Activity

Sound mp3 player (zinf) playing 128kb/s audio

(audigy driver)

audio recorder (audacity) recording from microphone

speech synthesizer (festival) reading a text file

strategy game (Battle of Wesnoth)

Network network file transfer (scp) of a 1GB file

remote window manager (vnc)

network analyzer (ethereal) sniffing packets

Storage compiler (make/gcc) compiling 788 C files

(ide-disk driver)

encoder (LAME) converting 90 MB file .wav to .mp3

database (mySQL) processing the Wisconsin Benchmark

ing tests, while the third untars and compiles a
number of files.

To measure isolation, test trials inject faults
into extensions running under two different Linux
configurations, both running the Linux-Nooks
kernel. In the first, called “native,” the Nooks
isolation services were present but unused. In
the second, called “Nooks,” the isolation services
were enabled for the extension under test. For
each driver, 400 trials inject five random faults
into the driver and exercised the system. Not all
fault-injection trials cause faulty behavior, e.g.,
bugs inserted on a rarely (or never) executed path
will rarely (or never) produce an error.

Asystem crash is the most extreme and easiest
problem to detect, as the operating system pan-
ics, becomes unresponsive, or simply reboots.
In an ideal world, every system crash caused by
a fault-injection trial under native Linux would
result in a recovery under Nooks. As previously
discussed, in practice Nooks may not detect or
recover from certain failures caused by very bad
programmers or very bad luck.

Figure 7 shows the number of system crashes
caused by the fault-injection experiments for
each of the extensions running on native Linux
and Nooks. Of the 333 crashes observed with
native Linux, Nooks eliminated 332, or 99%. In
the remaining crashes, the system deadlocked

when the driver went into a tight loop with inter-
rupts disabled. Nooks does not detect this type
of failure.

In addition, 206 trials caused applications to
fail without crashing the system under native
Linux. Nooks was able to reduce this to 102 ap-
plication failures. These failure manifest as the
driver misbehaving, but not performing illegal
operations. Nooks generally does not detect such
problems (nor is it intended to). However, when
Nooks’ simple failure detectors do detect such
problems, its recovery services can safely restart
the faulty extensions.

Figure 7 also illustrates a substantial differ-
ence in the number of system crashes that occur
for sb driver under Linux, compared to 1000,
pcnet32, and ide-disk. This difference reflects the
way in which Linux responds to kernel failures.
The €1000, pcnet32 and ide-disk extensions are
interrupt oriented, i.e., kernel-mode extension
code is run as the result of an interrupt. The sb
driver is process oriented, i.e., kernel-mode ex-
tension code is run as the result of a system call
from a user process. Linux treats exceptions in
interrupt-oriented code as fatal and crashes the sys-
tem, hence the large number of crashes in e1000,
pcnet32, and ide-disk). Linux treats exceptions in
process-oriented code as non-fatal, continuing
to run the kernel but terminating the offending

35

Table 4. The observed behavior of several applications following the failure of the device drivers on

which they depend.

Device Driver Reliability

Application Behavior
Device Driver Application Activity Linux-Native Linux-Nooks Linux-SD
Sound mp3 player CRASH MALFUNCTION v
(audigy driver) audio recorder CRASH MALFUNCTION v
speech synthesizer CRASH \ v
strategy game CRASH MALFUNCTION v
Network network file transfer CRASH \ v
(e1000 driver) remote window manager CRASH \ v
network analyzer CRASH MALFUNCTION v
IDE compiler CRASH CRASH v
(ide-disk driver) encoder CRASH CRASH v
database CRASH CRASH v

process even though the exception occurred inthe
kernel. This behavior is unique to Linux. Other
operating systems, such as Microsoft Windows
XP, deal with kernel processor exceptions more
aggressively by always halting the operating
system. In such systems, exceptions in sb would
cause system crashes.

Application Survival

The previous section evaluated the ability of the
operating systemto survive extension failures. This
section answers the question of whether applica-
tions that use a device driver continue to run even
after the driver fails and recovers. Shadow driver
recovery istested inthe presence of simple failures
to show the benefits of shadow drivers compared
to the simple restart recovery manager.

The crucial question for shadow drivers is
whether an application can continue functioning
following the failure of a device driver on which
it relies. To answer this question, the 10 applica-
tions in Table 3 were tested on each of the three
configurations, Linux-Native, Linux-Nooks, and
Linux-SD.

In each test, common driver bugs were simu-
lated by injecting a null pointer dereference bug

36

intoadevicedriver whileanapplication using that
driver was running. Because both Linux-Nooks
and Linux-SD depend on the same isolation and
failure-detection services, their recovery capabili-
ties are differentiated by simulating failures that
are easily isolated and detected.

Application Survival Results

Table 4 shows the three application behaviors
observed. When a driver failed, each application
continued to run normally (V), failed completely
(“CRASH”), or continued to run but behaved
abnormally (“MALFUNCTION?). In the latter
case, manual intervention was typically required
to reset or terminate the program.

This table demonstrates that shadow drivers
(Linux-SD) enable applications to continue run-
ning normally even when device drivers fail. In
contrast, all applications on Linux-Native failed
when drivers failed. Most programs running on
Linux-Nooks failed or behaved abnormally, il-
lustrating that restart recovery protects the kernel,
whichisconstructed to tolerate driver failures, but
doesnot protectapplications. The restart recovery
manager lacks two key features of shadow drivers:
(1) it does not advance the driver to its pre-fail
state, and (2) it has no component to “pinch hit”

Device Driver Reliability

for the failed driver during recovery. As a result,
Linux-Nooks handles driver failures by returning
an error to the application, leaving it to recover
by itself. Unfortunately, few applications can do
this.

Some applications on Linux-Nooks survived
the driver failure but in a degraded form. For
example, mp3 player, audio recorder and strat-
egy game continued running, but they lost their
ability to input or output sound until the user
intervened. Similarly, network analyzer, which
interfaces directly with the network device driver,
lost its ability to receive packets once the driver
was reloaded.

A few applications continued to function
properly after driver failure on Linux-Nooks. One
application, speech synthesizer, includes the code
to reestablish its context within an unreliable
sound-card driver. Two of the network applications
survived on Linux-Nooks because they access the
network device driver through kernel services
(TCP/IPand sockets) that are themselves resilient
to driver failures.

Unlike Linux-Nooks, Linux-SD can recover
from disk driver failures. Recovery is possible
because the IDE storage shadow driver instance
maintains the failing driver’s initial state. During
recovery the shadow copiesback the driver’sinitial
data and reuses the driver code, which is already
stored read-only in the kernel. In contrast, Linux-
Nooks illustrates the risk of circular dependencies
from rebooting drivers. Following these failures,
the restart recovery manager, which had unloaded
the ide-disk driver, was then required to reload the
driver off the IDE disk. The circularity could only
be resolved by a system reboot. While a second
(non-1DE) disk would mitigate this problem, few
machines are configured this way.

In general, programs that directly depend on
driver state but are unprepared to deal with its loss
benefit the most from shadow drivers. In contrast,
those that do not directly depend on driver state or
are able to reconstruct it when necessary benefit
the least. Experience suggests that few applica-

tions are as fault-tolerant as speech synthesizer.
Were future applications to be pushed in this
direction, software manufacturers would either
need to develop custom recovery solutions on a
per-application basis or find a general solution
that could protect any application from the failure
of a device driver.

Application Behavior During Driver
Recovery
Although shadow drivers can prevent application
failure, they are not “real” device drivers and do
not provide complete device services. As a result,
applications often observe a slight timing disrup-
tion while the driver recovered. At best, output
was queued in the shadow driver or the kernel. At
worst, input was lost by the device. The length of
the delay depends on the recovering device driver
itself, which, on initialization, must first discover
and then configure the hardware.
Fewdevicedriversimplement fast reconfigura-
tion, which can lead to brief recovery delays. For
example, the temporary loss of the e1000 network
devicedriver prevented applications from receiv-
ing packets for about five seconds while the driver
reinitializes. Programs using files stored on the
disk managed by the ide-disk driver stalled for
aboutfourseconds during recovery. In contrast, the
normally smooth sounds produced by the audigy
sound-card driver were interrupted by a pause of
about one-tenth of one second, which sounded
like a slight click in the audio stream.
Thesignificance of these delays dependsonthe
application. Streaming applications may become
unacceptably “jittery” during recovery. Those
processing input data in real-time might become
lossy. Others may simply runafew seconds longer
in response to a disk that appears to be operating
more sluggishly than usual.

Performance
Thissection presents benchmark results thatevalu-

ate the performance cost of the Nooks and shadow

37

Device Driver Reliability

Figure 8. Comparative application performance of Linux-SD relative to Linux-Native. The X-axis crosses

Relative Performance

at 80%.
Sound
100
8
8 95
&
g
b=
{90:
2
= |
a 95
ao! i i C
5 3 £ ¢
g 8 5 8
2 5 B
E g § £
= a2 =
m o o

drivers. The experiments use existing benchmarks
and tools to compare the performance of a system
using Nooks to one that does not. Tests ran on a
Dell 3 GHz Pentium 4 PC running Linux 2.4.18.
The machine includes 1 GB of RAM, a Sound-
Blaster Audigy sound card, an Intel Pro/1000
Gigabit Ethernet adapter, and asingle 7200 RPM,
80 GB IDE hard disk drive

The same application reliability benchmarks
are used to evaluate system performance with the

etk sen | —

Figure 9. Absolute CPU utilization by application.

Network Storage

network |
receive
encoder

compiler

web server

exception of the network applications. For the
network driver, throughput isamore useful metric;
therefore, the throughput-oriented network send
and network receive benchmarks are substituted.
In addition, the web server benchmark measures
network application performance.

For each benchmark, Nooks isolates a single
driver. The benchmark executes both on native
Linux without Nooks (Linux-Native) and then
againonaversion of Linuxwith Nooksand shadow

CPU Utilization

-
(=]
o

[x2]
o

2]
o

CPU Utilization (%)
F-9
o

ha
(=]

Sound Network __ Storage
| BLinux-Native Linux-SD i
0 — — == —=m 4] - L -] :

e 5 : @ o X o - e =
: 2 £ §E § B2 : % 3 B
o § @ o 2 £ g 8 £ @
© = = £] a 9 5 =
a o] i g 2 L ©
E 3 g = 5

Ed @ @ =

38

Device Driver Reliability

drivers enabled (Linux-SD). Figure 8 shows the
performance of Linux-SD relative to Linux-Native
eitherinwall clock time or throughput, depending
onthe benchmark. Figure 9 shows CPU utilization
measured during benchmark execution (which
is only accurate to a few percent). These figures
show that Nooks achieves 97% and 100% of the
performance of native Linux for these tests.

The primary performance difference is in the
CPU utilization of the benchmarks. As the isola-
tion services are primarily imposed at the point
of the XPC, the rate of XPCs offers a telling
performance indicator. Thus, the benchmarks fall
into two broad categories characterized by the rate
of XPCs: low frequency (a hundred to thousands
XPCs per second), and high frequency (tens of
thousands of XPCs per second).

The sound and storage driver benchmarks
exhibit low XPC rates; between 300 and 1000 per
second. At this low rate, the additional CPU utili-
zationis negligible. For the many low-bandwidth
devices in a system, such as keyboards, mice,
Bluetooth devices, modems, and sound cards,
Nooks offers improved reliability with almost no
performance cost.

The network send and receive benchmarks are
examples of high XPC-frequency applications.
Network receive performance was measured with
the netperf performance tool, where the receiving
node used an isolated Ethernet driver to receive
a stream of 32KB TCP messages using a 256KB
buffer. The machine is bandwidth, not CPU lim-
ited, and hence there is no reductioninthroughput.
However, overall CPU utilization increase of 7
percentage points for receiving packets and 29
percentage points for sending packets.

The added cost comes from two factors: execut-
ing more code, to implement Nooks isolation, and
executing existing code more slowly. Asingle XPC
may take thousands of cycles, because it must copy
data between the kernel and the driver as well as
change the page table. This causes both kerneland
driver code to execute more slowly, because the
x86 architecture must flush the TLB after the page

table changes, leading to subsequent TLB misses.
In addition, the additional code and data copying
puts pressure on the processor caches, leading to
more misses and lower performance.

Performance Summary

This section used a small set of benchmarks to
quantify the performance cost of Nooks. Nooks
imposed a performance penalty of less than
3%, although CPU utilization doubled for some
workloads. The rate of XPCs is a key factor in
the performance impact, as XPCs impose a high
burden, due to cost of flushing the x86 TLB in the
current implementation. The performance costs
of Nooks’ isolation services depend as well on
the CPU utilization imposed by the workload. If
the CPU is saturated, the additional cost can be
significant, because there is no spare capacity to
absorb Nooks overhead.

Summary of Nooks and
Shadow Drivers

Overall, Nooks provides a substantial reliability
improvement at low cost for common drivers.
The results demonstrate that: (1) the performance
overhead of Nooks during normal operation is
small for many drivers and moderate for other
extensions, (2) applications and the OS survived
driver failures that otherwise would have caused
the OS, application, or both tofail. Overall, Nooks
and shadow drivers prevented 99% of system
crashes, with an average performance cost of
1% for drivers.

DRIVER FAULT TOLERANCE
IN COMMERCIAL SYSTEMS

While Nooks remains a research project, several
commercial operating systems provide run-time
mechanisms to isolate the kernel from driver
failures. These mechanisms can be categorized
into two major categories: user-mode drivers to

39

Device Driver Reliability

Figure 10. (a) Microsoft Windows User-Mode Driver Framework. Applications call standard Win32
1/0 APIs, and the kernel 1/0 manager invokes a UMDF device object that forwards the request to user
mode. (b) Linux Userspace I/O (UIO) architecture. Applications link to driver libraries, which use the
Posix 1/0 APIs to communicate to the UIO manager in the kernel.

Host Process
Application User-mode Driver
Win32 API
User Mode
Kernel Mode
L Reflector ¢
/0 Manager

Addition stacked
kernel-mode
drivers

(a)

remove driver code from the kernel, and virtual
machine isolation of drivers.

User-Mode Drivers

While drivers for most commodity operating
systems are written in kernel-mode, Windows,
Linux and MacOS X all have limited support
for user-mode drivers. This section describes the
support in Windows and Linux.

Microsoft Windows UMDF

In response to driver reliability problems, Mi-
crosoft implemented the User-mode Driver
Framework (UMDF) for Windows XP and Vista
(Microsoft,2007). Asshownin Figure 10a, UMDF
adds a reflector to the device driver stack that
forwards requests to a user-mode driver host
process. 1/O requests from applications are sent
first to the 1/0 manager in the Windows kernel,
which dispatches requests to specific drivers. For

40

_— User-mode
Application Driver Library
Posix 110 API

User Mode
Kernel Mode

Device

interrupt

handler

(b)

devices with UMDF drivers, the 1/0 manager
sends requests to the reflector, which forwards
the request to a user-level runtime, which in turn
invokes the UMDF driver.

UMDF drivers are specified as a set of COM
(Component Object Model) interfaces. As a
result, UMDF simplifies driver development by
supporting the C++ language and by providing
runtime support for common driver operations.
However, it therefore cannot provide fault toler-
ance for existing kernel-mode drivers, which must
be written in C.

User-move driver support in Windows is
complicated by the existence of stacked drivers.
In this model, a device is served by a layered set
of drivers, each providing additional functionality.
Forexample, adriver fora USB device layer over
ageneric USB interface driver, which layers over
a driver for the specific host interface attached to
the device. In UMDF, only the top-most driver in
a stack may execute at user-level; the rest must
execute in the kernel.

Device Driver Reliability

In addition, UMDF does not support drivers
requiring interrupt handling, because Windows
cannot field interrupts at user level. Drivers also
cannot use DMA, because a driver could bypass
kernel memory protection. These three limitations
restrict UMDF drivers to devices accessed over
serial ports, USB buses, or a network. In addition,
driversaccessed internally within the kernel, such
as storage and network devices, cannot be sup-
ported. Thus, UMDF supports portable storage
devices, such as PDAs and cell phones, portable
media players, USB bulk transfer devices, and
auxiliary display/video devices, but not network
devices or hard disks.

Linux UIO

Starting withthe 2.6.23 kernel, Linux includes the
Userspace I/0 (UIO) driver model that can execute
some driver code inuser mode (Koch, 2008). With
UIO, drivers consistof akernel module containing
an interrupt handler and a user-level library for
the remainder of the driver. At startup, a kernel
module registers an interrupt handler and a list of
I/0 memory addresses withthe UIO manager. The
UIO manager exports this information through
an entry named in the /dev/uioX, where X is the
index of the device. Reading from the device file
returns the number of interrupts since it was last
read, or blocks if there have been none. Memory
mapping the device file provides access to the
device’s memory regions.

In the UIO driver model, all driver functional-
ity except dismissing interrupts executes at user
level. The kernel portion of a UIO driver is solely
responsible for telling the device to stop interrupt-
ing, at which point it signals that the user-level
driver should execute. The driver model provides
no specific API to access device functionality;
the driver code may be linked directly in with
applications. As a result, UIO drivers cannot be
accessed through standard file system interface,
and therefore require changes to application code

to be used. Figure 10(b) illustrates the UMDF
architecture.

Like Nooks, executing driver code at user
level with UIO isolates the kernel from driver
bugs. However, UIO has substantial limitations
not present with Nooks. First, UIO is only avail-
able for devices with a character interface, but not
block or network interfaces. Second, UIO pro-
vides no fault-detection or recover mechanisms.
Finally, UIO requires writing new driver, so does
not preserve the existing investment in drivers.
Nonetheless, the UIO framework is compact,
consisting of 800 lines of code, and can isolate
the kernel from the failure of drivers.

Xen Hypervisor Drivers

Virtual machines raise unique issues for 1/0. Most
virtual machine monitorsand hypervisors virtual-
ize devices to share them between multiple guest
virtual machines (Barham et al, 2003, and Fraser
et al, 2004). As a result, guest operating systems
talk toavirtual device rather than communicating
directly with a physical device. In some virtual
machine monitor architectures, device drivers
execute within the virtual machine monitor it-
self. This poses the same reliability problems
as executing drivers unprotected within an OS
kernel, as a driver failure may cause the VMM
and all guest VMs to crash. Hosted VMMs rely
on a host operating system for device access. In
this architecture, too, the failure of a driver can
lead the host OS, the VMM, and all guest virtual
machines to crash.

The Xen hypervisor addresses this problem
by executing device drivers in virtual machines,
rather than within the hypervisor. As shown in
Figure 11, the guest OS kernel runs a virtual
driver that exports an interface identical to a real
devicedriver. Like shadowdrivers, avirtual driver
represents a class of devices, such as a network
interface card. Thus, only one virtual driver is
required per class. Instead of using processor

41

Device Driver Reliability

Figure 11. Xen architecture for device driver isolation. Drivers execute in a special driver virtual ma-

chine, called an Isolated Driver Domain (IDD).

I/O operations, the virtual driver communicates
with a real driver executing in an isolated driver
domain, a virtual machine specific to that driver
or to a set of drivers. Data communication takes
place through a ring buffer, and control is com-
municated through the Xen Hypervisor.

In the driver VM, the real driver runs inside a
standard operating system, and the Xen hypervi-
sor provides it with access to physical devices.
Xen also provides code to receive incoming 1/0
requests from guest VMs and invoke the real
driver. A failure of the driver may cause the
operating system and other drivers in the driver
VM to fail, but the guest OS and its applications
are unaffected.

This architecture provides several distinct
benefits:

The driver VM can execute unmodified
devicedrivers, providing compatibility with
existing code.

The operating system in the guest VM and
the driver VM may be different, enabling
drivers for one operating system (e.g., Linux
in the driver VM) to be used for device ac-
cess a different guest OS (e.g., Solaris).
Thecode inthe guest OSisrelatively simple.
In contrast to the thousands of lines of
wrapper code in Nooks, Xenrequires only a
small virtual driver. Inaddition, this virtual
driver is easier to port between operating

42

Guest VM Driver VM
Application Shared
Application Ring
Buffer
Guest Kernel Linux Driver
Kernel
Virtual Real
Driver Driver

systems or versions of a single operating
system.

Performance is comparable to Nooks, as
passing data to a driver requires changing
memory protection or copying, and invoking
adriver requires changing page tables when
changing virtual machines.

However, this architecture also imposes ad-
ditional performance costs by running an entire
operating systeminthedriver’s protection domain.
Thisrequires additional memory and may require
additional administration, to apply patches to
this OS.

RESEARCH DIRECTIONS

Within the operating research community, two
further approaches for driver fault tolerance have
been investigated: pushing user-mode drivers
further, to remove all drivers from the kernel; and
applying language-level protections, such as type
safety, to driver code.

User-Mode Drivers in Microkernels

All preceding approachs to driver reliability were
constrained by the need to execute within an
existing monolithic operating system. The Minix
3 operating system is a research system investi-

Device Driver Reliability

gating the reliability benefits of a small-kernel
design (Herder et al 2006). Only code needed for
securely multiplexing hardware, such as interrupt
handling, process creation and scheduling, and
inter-process communication, is included in the
kernel. All other services, including networking,
file systems, and device access, execute in separate
user-level processes.

Minix executes driver code similarly to Win-
dows UMDF; an /O request goes through the
Minix kerneltoauser-level driver process (Herder
etal, 2007). However, Minix removes the restric-
tions of UMDF and allows all drivers to execute
atuser level. First, it traps device interrupts in the
kernel and instead sends a message to a waiting
driver process. These messages do not interrupt a
driver process, but instead are retrieved the next
time the driver waits for an event. This removes
the need to write re-entrant driver code. Second
user-level code is granted access to 1/0 hardware
through the kernel. Rather than reading or writing
a device register directly, drivers make a system
call to access the device. In contrast, UMDF
provides no access to devices from user-level. In
addition, Minix 3 depends on hardware support
to prevent a user-level driver from using DMA
to corrupt memory, while UMDF prohibits DMA
completely.

In addition to isolation, Minix 3 provides
recovery mechanisms similar to Nooks. The OS
includes areincarnation server that (1) is notified
by the kernel when a driver process crashes, and
(2) polls all drivers periodically to determine if
they still function. If a driver fails, the reincarna-
tion server kills and restarts the driver process.
Unlike shadow drivers, the failure is not concealed
from applications.

Minix 3 demonstrates that, with a full-system
redesign and hardware support, drivers can execute
safely and with high performance in user mode.

Type-Safe Drivers

Theprecedingdriver reliability systemsall depend
on hardware memory protection, in the form of
virtual memory protectionand processor privilege
levels, to prevent drivers from corrupting the
kernel. In contrast, SafeDrive and Singularity
provides reliable execution of device drivers by
verifying type safety at statically, at compile time,
and dynamically, at runtime.

SafeDrive targets existing drivers for the Linux
operating system, and relies on programmer an-
notations to enable compiler type checking (Zhou
et al, 2006). Rather than relying on hardware
memory protection like Nooks, SafeDrive uses a
compiler to (1) verify the type safety of a driver
statically, when possible, and (2) generate code
to enforce type safety at runtime. Like Nooks,
SafeDrive is compatible with existing drivers and
requires only minor modifications to annotate
driver data structures. In addition, it provides a
recovery mechanism similar to Nooks’ default
recovery manager that safely unloads a failed
driver. Compared to Nooks, SafeDrive imposes
lower performance overhead for drivers with fre-
quentkernel interactions, such as network drivers.
However, it only detects memory errors and not
invalid parameters or livelock problems.

Singularity, like Minix 3, isanew microkernel
operating system (Hunt & Larus, 2007). Itrequires
that all code, including the OS kernel, device
drivers, and applications be written in Sing#, a
variant of the C# programming language, which
is type safe. As a result, memory protection can
be enforced statically through the compiler, rather
than with hardware at runtime. Similar to Minix
3, drivers execute in separate processes (Spear et
al, 2006), which are isolate through type safety
rather than virtual memory protection. The com-
munication channel between drivers and other
processes is specified as a contract, allowing
compilerstostatically ensure that the driver obeys
the interface contract. This reduces the frequency
of coding errors by catching thematcompiletime,

43

and reduces the likelihood that a faulty driver will
corrupt other processes.

CHAPTER SUMMARY

Reliability has become a critical challenge for
commodity operating systems. The competitive
pressure on these systems and their huge installed
base, though, prevents the adoption of traditional
fault-tolerance techniques.

This chapter presents a new approach to im-
proving the reliability of operating systems that is
atonceefficientand backwards compatible. Rather
than tolerate all possible failures, Nooks targets
the most common failures and thereby improve
reliability at very low cost. In today’s commodity
operating systems, device driver failures are the
dominant cause of system failure.

Nooks prevents drivers from forcing either
the OS or applications to restart. It uses hardware
and software techniques to isolate device drivers,
trapping many common faults and permitting ex-
tension recovery. Shadow drivers ensure that the
OS and applications continue to function during
and after recovery. Dynamic driver update ensures
that applications and the OS continue to run when
applying driver updates.

The Nooks system focuses on backward
compatibility. That is, Nooks sacrifices complete
isolation and fault tolerance for compatibility and
transparency with existing kernels and drivers.
Nevertheless, Nooks demonstrates that it is pos-
sibletorealize anextremely high level of operating
system reliability with low performance lost for
common device drivers.

REFERENCES

Barham, P., Dragovic, B., Fraser, K., Hand, S.,
Harris, T., Ho, A., et al. (2003). Xen and the art
of virtualization. In Proceedings of the 19th ACM
Symposium on Operating Systems Principles.

44

Device Driver Reliability

Fraser, K., Hand, S., Neugebauer, R., Pratt, I.,
Warfield, A., & Williamson, M. (2004). Safe
hardware access with the Xen virtual machine
monitor. In Workshop on Operating System and
Architectural Support for the On-Demand IT
Infrastructure.

Herder, J. N., Bos, H., Gras, B., Homburg, P.,
& Tanenbaum, A. S. (2006). Minix 3: a highly
reliable, self-repairing operating system. ACM
Operating Systems Review, 40(3), 80-89.
doi:10.1145/1151374.1151391

Herder, J. N., Bos, H., Gras, B., Homburg, P., &
Tanenbaum, A. S. (2007). Failure resilience for
device drivers. In The 37th Annual IEEE/IFIP
International Conference on Dependable Systems
and Networks, (pp. 41-50).

Hunt, G., & Larus, J. (2007). Singularity: Rethink-
ing the software stack. Operating Systems Review,
41(2), 37-49. d0i:10.1145/1243418.1243424

Koch, H.-J. (2008). The Userspace I/0O HOWTO.
Revision 0.5. In Linux kernel DocBook docu-
mentation.

Microsoft (2006). Architecture of the user-mode
driver framework. Version 0.7. Redmond, WA:
Author.

Spear, M., Roeder, T., Hodson, O., Hunt, G., &
Levi, S. (2006). Solving the starting problem:
Device drivers as self-describing artifacts. In
Proceedings of the 2006 EuroSys Conference,
pages 45-58.

Swift, M., Annamalau, M., Bershad, B. N., &
Levy, H. M. (2006). Recovering device drivers.
ACM Transactions on Computer Systems, 24(4).
doi:10.1145/1189256.1189257

Swift, M. M., Bershad, B. N., & Levy, H. M.
(2005). Improving the reliability of commodity op-
erating systems. ACM Transactions on Computer
Systems, 23(1). doi:10.1145/1047915.1047919

Device Driver Reliability

Zhou, F., Condit, J., Anderson, Z., Bagrak, I., En-
nals,R.,Harren, M., etal. (2006). SafeDrive: Safe
and recoverable extensions using language-based
techniques. In Proceedings of the 7th USENIX
Symposium on Operating Systems Design and
Implementation.

45

46

Chapter 3
ldentifying Systemic

Threats to Kernel Data:
Attacks and Defense Techniques

Arati Baliga
Rutgers University, USA

Pandurang Kamat
Rutgers University, USA

Vinod Ganapathy
Rutgers University, USA

Liviu Iftode
Rutgers University, USA

ABSTRACT

The authors demonstrate a new class of attacks and also present a novel automated technique to detect
them. The attacks do not explicitly exhibit hiding behavior but are stealthy by design. They do not rely
on user space programs to provide malicious functionality but achieve the same by simply manipulating
kernel data. These attacks are symbolic of a larger systemic problem within the kernel, thus requiring
comprehensive analysis. The author’s novel rootkit detection technique based on automatic inference of
data structure invariants, which can automatically detect such advanced stealth attacks on the kernel.

INTRODUCTION

Integrity of the operating system kernel is critical
to the security of all applications and data on the
computer system. Tampering with the kernel is tra-
ditionally performed by malware, commonly known
as rootkits. The term “rootkit” was originally used
to refer to atoolkit developed by the attacker, which

DOI: 10.4018/978-1-60566-850-5.ch003

would help conceal his presence onthe compromised
system. The rootkit was typically installed after the
attacker obtained “root” level control and attempted
to hide the malicious objects belonging to him, such
as files, processes and network connections.

A rootkit infested system can be exploited by
remote attackers stealthily, such as exfiltration of
sensitive information or system involvement in
fraudulent or malicious activities without the user’s
knowledge or permission. The lack of appropriate

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of 1GI Global is prohibited.

Identifying Systemic Threats to Kernel Data

Figure 1. Evolution of rootkit attack techniques

KERNEL SPACE
NON-CONTROL DATA

Process Lists

Virtual File

CONTROL DATA

i Systemcall

USER SPACE

Shared Libraries User binaries

E':‘"" System (VFS) !@\‘

Hﬂi..dﬁrsc:j

4-©

L

fust/bin/ls

fust/bin/ps

Jusr/lib/libe.so

Handlers

= Entropy Pools :

Other /g/

/usr/bin/login

I}

o

LAYER BELOW

| Virtual machine based Rootkits (VMBR) |

| Other independent rootkits |

detection tools allows such systems to stealth-
ily lie within the attackers realm for indefinite
periods of time. Recent studies have shown a
phenomenal increase in the number of malware
that use stealth techniques commonly employed by
rootkits. For example, a report by MacAfee Avert
Labs (MacAfee, 2006) observes a 600% increase
in the number of rootkits in the three year period
from 2004-2006. Indeed, this trend continues
even today; according to the forum antirootkit.
com (Antirootkit, n.d.), over 200 rootkits were
discovered in the first quarter of 2008 alone.

Rootkit Evolution

Rootkits attack techniques have matured over
the past few years, posing a realistic threat to
commodity operating systems. Comprehensive
detection of suchadvanced rootkits is still an open
research problem. The new attack techniques used
by rootkits have inturn triggered the development
of novel techniques to detect their presence. The
evolution of rootkits and techniques to detect them
continues to be an arms race between attackers
and defenders. Figure 1 shows the evolution in
rootkit attack techniques. Rootkits have evolved

from manipulating user space binaries and shared
libraries to modifying control and non-control data
inthe kernel. The latest rootkits install themselves
below the operating system.

Early rootkits operate by modifying system
binaries and shared libraries replacing them with
trojaned versions. The goal of these trojaned
binaries is to hide malicious objects or grant
privileged access to malicious processes. For
example, a trojaned ps binary will not list the
malicious processes running on the system. A
trojaned login process can give root privileges
to a malicious user. To detect trojaned system
binaries and shared libraries, tools such as Trip-
wire (Kim, 1994) and AIDE (Aide, n.d.) were
developed. These tools generate checksums of
authentic binaries when run onaclean systemand
store them in a database. A user can examine the
system at later points in time, using these tools,
and compare the checksums of system binaries
with those previously stored in the database. A
mismatch in checksum indicates the presence of
the trojaned binary. Other detection tools used an
anti-virus like approach, where the presence of
a rootkit is detected using a database of known
signatures, such as a specific sequence of bytes

47

in memory, or by the presence of certain files on
disk. This approach does not protect the system
against newer unknown rootkits. Rootkits could
thwart such detectors by using polymorphic and
metamorphic techniques for code obfuscation,
traditionally used by viruses to escape detection
from anti-virus programs.

To escape detection from disk based integrity
checkers, rootkits have evolved to make modi-
fications to kernel code and certain well known
immutable data structures in the kernel, such as
the system call table, to achieve the same goals.
These rootkits are known as kernel-level rootkits
because they modify the kernel. Modifications
to the kernel make the rootkit powerful enough
to control all application level views. For ex-
ample, intercepting the file related system calls,
allows the rootkit to control all files accesses by
all applications on the system. The rootkit can
intercept these accesses and perform the neces-
sary filtering to hide its malicious objects. Since
the rootkit manipulates the kernel, which is the
trusted computing base of the system, it can also
manipulate any user level applications on the
system. Such applications include the rootkit
detection tools that run in user space. Therefore,
researchers proposed isolating the rootkit detec-
tors from the operating system by either moving
them onto a secure co-processor that does notrely
on the operating system (Petroni, 2004), (Zhang,
2002) or isolating them using the virtualization
architecture where the detector is run in a sepa-
rate virtual machine (Garfinkel, 2003), (Payne,
2008). The rootkit detectors, built to detect the
kernel level rootkits, use a checksum/secure hash
based method to detect corruption of the kernel
code or other well known immutable data struc-
tures in the kernel, such as the system call table.
The hashes are pre-computed over the memory
locations of a clean system, where the code and
data structures are stored. They are periodically
recomputed and compared with the stored hashes
to detectcode or data structure corruption (Petroni,
2004),(Garfinkel, 2003).

48

Identifying Systemic Threats to Kernel Data

To further thwart detection tools, rootkit au-
thors have adopted stealthier techniques. Since
detection tools solely checked the integrity of the
kernel code and some well known data structures,
such as the system call table, rootkits delved
deeper into the kernel and altered data structures
that were less known. For example, instead of
modifying file related system calls in the system
call table, rootkits modified hooks in the virtual
file system layer instead. For a while, the arms
race continued where the rootkit explored a new
datastructure thatitcould exploit, while the detec-
tor had to incorporate the newly discovered data
structure in its verification list. Most of the data
that the rootkits modified was immutable control
data i.e. function pointers used by various layers
in the kernel. An automated approach was later
developed to uniformly check for manipulation of
all control data in the kernel, by validating every
function pointer against a valid kernel function
address (Petroni, 2007).

Sincethe integrity of mostly immutable control
datacan be verified, rootkit authors have advanced
another step and have built innovative attacks
that work by solely manipulating data structures
that are mutable (Butler, 2005). This defeats the
existing integrity checking mechanism of storing
checksums and performing periodic comparisons
because these data structures are also modified by
authentic kernel code. We demonstrated some at-
tacks thatwork by modifying relatively immutable
non-control data (Baliga, 2007), (Baliga, 2009).
These attacks modify variable values to alter the
behavior of kernel algorithms. They escape de-
tection because they manipulate non-control data
within data structures not typically monitored by
rootkit detectors. Detection approach was built
to detect these advanced attacks using manual
specifications, as long as the attack obeys some
constraint (Petroni, 2006). Thisapproach is effec-
tive as long as a manual security expert is capable
of analyzing, anticipating and specifying the
constraints on data structures that might become
the target of future attacks.

Identifying Systemic Threats to Kernel Data

More recent trends have shown rookits that
operate below the operating system layer. Re-
searchers have demonstrated rootkits that use the
virtual machine technology to subvert the system
(King, 2006), (Rutkowska, 2006) and rootkits
that work independently of the operating system
withoutrequesting its services or affecting its state
(David, 2008). While these indicate a new trend
in the development of rootkits, they are likely to
be unpopular because they are highly platform
specific and depend on specific hardware features
fortheir deployment. The operating system is still
an attractive target because kernel level rootkits
work independent of the hardware and can there-
fore be easily ported across different platforms.
The kernel also provides a large code base and
numerous amounts of complex data structures,
providing the rootkitauthors with several avenues
for building stealthy innovative attacks.

Our Contribution

The focus of this chapter is on attacks that alter
code and data structure in the operating system
kernel. Conventionally, rootkits provide all ma-
licious functionality as user space programs. To
conceal their presence, rootkits tamper with the
kernel. This involves modifying kernel code or
data structures in the system call paths that are
capable of affecting the user’s view of the system.
Typically, rootkits intercept control by installing
hooks within the system call control path, which
provide them with the capability of filtering
requests and responses. The most common data
structure manipulated by rootkits for this purpose
is the system call table. As detection techniques
matured to monitor the well known data structures
targeted by rootkits, rootkits evolved to modify
other less known data structures for control in-
terception. Others evolved to modify non-control
data to achieve similar goals.

Whilethe datastructuresthatare tampered have
changed over the years, the intent of tampering is
still the same, namely to hide the malicious files,

process and network connections. These rootkits
can be easily detected by tools that use the hid-
ing behavior as a symptom for detection. In fact,
tools such as Strider Ghostbuster (\Wang, 2005)
detect the presence of rootkits, merely from their
attempt to hide.

In this chapter, we demonstrate a new class
of attacks and also present a novel automated
technique to detect them. The attacks do not ex-
plicitly exhibit hiding behavior butare stealthy by
design. They do not rely on user space programs
to provide malicious functionality but achieve the
same by simply manipulating kernel data. These
attacks are symbolic of a larger systemic problem
within the kernel, thus requiring comprehensive
analysis. Our novel rootkit detection technique
based on automatic inference of data structure
invariants, which can automatically detect such
advanced stealth attacks on the kernel. We have
built a prototype Gibraltar, which evaluates our
approach. Gibraltar hasautomatically detected all
publicly known rootkits as well as other stealth
attacks discussed by us and proposed in other
research literature.

ATTACKS

In this section, we present four stealth attacks that
we designed and one designed by another research
group (Shellcode, 2006), all of which achieve
their malicious objectives by solely changing
kernel data. None of them explicitly exhibit hid-
ing behavior and therefore cannot be detected by
tools that use hiding behavior as a symptom for
detection. These attacks span different subsystems
inthe kernel and are indicative of amore systemic
threat posed by future rootkits.

Disable Firewall
This attack hooks into the netfilter framework

of the Linux kernel and stealthily disables the
firewall installed on the system. The user cannot

49

Identifying Systemic Threats to Kernel Data

Figure 2. Hooks provided for the Linux netfilter framework

PRE-ROUTING
]
L

FORWARD

[]
-

POST-ROUTING

"7

determine this fact by inspecting the system using
iptables. The rules still appear to be valid and the
firewall appears to be in effect. In designing this
attack, the goal of the attacker is to disable the
network defense mechanisms employed by the
target systems, thereby making them vulnerable
to other attacks over the network.

Background: Netfilter is a packet filtering
framework in the Linux kernel. It provides hooks
at different points in the networking stack. This
was designed for kernel modules to hook into
and provide different functionality such as packet
filtering, packet mangling and network address
translation. These hooks are provided for each
protocol supported by the system. The netfilter
hooks for the IP protocol are shown in Figure 2.
Each of the hooks, Pre-routing, Input, Forward,
Output and Post-routing, are hooks at different
points in the packets traversal. Iptables is a fire-
wall management command line tool available
on Linux. Iptables can be used to set the firewall
rules for incoming and outgoing packets. Iptables
usesthe netfilter framework to enforce the firewall
rules. Packets are filtered according to the rules
provided by the firewall.

Attack Description: The pointerstothe netfilter
hooks are stored in a global table called nf_hooks.
Thisisanarray of pointers that pointto the handlers
registered by kernel modules to handle different
protocol hooks. Thisdatastructure isexported even
bythe latest 2.6 Linux kernel. We modified the hook
correspondingtothe IPprotocol and redirected itto
our dummy code, effectively disabling the firewall.

50

[]
|
OUTPUT

FromProcesses

The firewall rules that we used during this experi-
mentare shown in Figure 3. The INPUT rules deny
admission for incoming traffic to the web server
running on the system. Before the attack, we were
unable to access this web server externally. After
we inserted the attack module, we could access the
web content hosted by the web server running on
http port (port 80). Running iptables command to
list the firewall rules still shows that the same rules
are in effect (as shown in Figure 3). The user has
no way of knowing that the firewall is disabled as
the rules appear to be in effect.

Impact: A stealthy attack such as the one de-
scribed cannot be detected by the existing set of
tools. Since our attack module is able to filter all
packets without passing it to the firewall, it can
run other commands upon receipt of a specially
crafted packet sent by the remote attacker.

Resource Wastage

This attack causes resource wastage and perfor-
mance degradation on applications by generating
artificial memory pressure, which can lead to a
thrashing (Wiseman, 2009), (Jiang, 2009). The
goal of this attack is to show that it is possible
to stealthily influence the kernel algorithms by
simply manipulating data values. This attack
targets the zone balancing logic, which ensures
that there are always enough free pages available
in the system memory.

Background: Linux divides the total physical
memory installed on a machine into nodes. Each

Identifying Systemic Threats to Kernel Data

Figure 3. Firewall rules deny admission to web server port

Chain INPUT (pclicy ACCEPT)

target prot oOpt source destination

RCCEFT tcp -- anywhere anywhere tep dpt:i:ssh

ARCCEFT tcp -- anywhere anywhere tep dpt:telnet

ACCEPFT tcp =-- anywhere anywhere tcp dpr:z4

REJECT tcp -- anywhere anywhere tcp dpt:http reject-with

icmp-port-unreachable

Chain FORWARD (policy ACCEPT)

target prot opt source destination
Chain OUTPUT (peclicy ACCEPT)
target prot Opt source destination

node corresponds to one memory bank. A node
is further divided into three zones: zone dma,
zone normal and zone highmem. Zone dma is
the first L6 MB reserved for direct memory access
(DMA) transfers. Zone normal spans from 16MB
to 896MB. This is the zone that is used by user
applications and dynamic data requests within
the kernel. This zone and zone dma are linearly
mapped in the kernel virtual address space. Zone
highmem is memory beyond 896MB. This zone
is not linearly mapped and is used for allocations
that require a large amount of contiguous memory
in the virtual address space.

Each zoneisalways kept balanced by the kernel
memory allocator called the buddy allocator and
the page swapper kswapd. The balance isachieved
using zone watermarks, whichare basically indica-
tors for gauging memory pressure inthe particular
zone. The zone watermarks have different values
for all the three zones. These are initialized on
startup depending on the number of pages present
in the zones. These three watermarks are called
pages_min, page lowand pages_highrespectively
as shown in Figure 4. When the number of free
pagesinthe zones, drops below pages_low pages,
kswapd is woken up. kswapd tries to free pages
by swapping unused pages to the swap store. It
continues this process until the number of pages
reaches pages_high and then goes back to sleep.

When the number of pages reaches pages_min,
the buddy allocator tries to synchronously free
pages. Note that sometimes the number of free
pages can go below the pages_min, due to atomic
allocations requested by the kernel.

Attack Description: The zone watermarks
for each zone are stored in a global data structure
calledzone_table.Zone_tableisanarray of zone t
datastructuresthat correspondto each zone. Zone
watermarks are stored inside this data structure.
This symbol is exported even by the 2.6 kernel.
Thelocation of thistable can be found by referring
to the System.map file. We wrote a simple kernel
moduleto corruptthe zone watermarks for the zone
normal memory zone. The original and new values
for these watermarks are shown in Table 1. We
pushthe pages_minandthe pages_lowwatermarks
very close to the pages_high watermark. We also
make the pages_high watermark very close to the
total number of pages in that zone.

Thisforcesthe zone balancing logic to maintain
the number of free pages close to the total number
of pages in that zone, essentially wasting a big
chunk of the physical memory. Table 1 shows that
210065 (820.56 MB) pages are maintained in the
free pool. This attack can be similarly carried out
for other zones as well, wastingalmostall memory
installed on the system. The table indicates that
only about 60MB is used and the rest is main-

51

Identifying Systemic Threats to Kernel Data

Figure 4. Kernel Memory Allocation: Zone balancing logic and usage of zone watermarks

222000

220000 pages_high
8 2180001
o
azwuuu
® ,,1%&‘!.."3?.9_“’0&& AN ’ \ages_ low
® 214000f P | m '!‘ —l
~ f
©
4 212000F

210000F pages_min

-4 allocator frees
208000 memory SYﬂChro.nously
time

Table 1. Watermark values and free page count
before and after the resource wastage attack for
the normal zone

Watermark Original Value Modified Value
pages_min 255 210000
pages_low 510 21500
pages_high 765 220000
total free pages 144681 210065

total number of pages in zone: 225280

tained in the free pool, causing applications to
constantly swap to disk. This attack also imposes
aperformance overhead on applications as shown
in Table 2. The three tasks that we used to measure
the performance overhead are file copy of a large
number of files, compilation of the Linux kernel
and file compression of a directory. The table
shows the time taken when these tasks were car-
ried out on a clean kernel and after the kernel was

tampered. The performance degradation imposed
by this attack is considerable.

Impact: This attack resembles a stealthier
version of the resource exhaustion attack, which
traditionally has been carried out over the network
(Schuba, 1997), (Wang, 2002), (Moore,2006). We
try to achieve a similar goal i.e to overwhelm the
compromised system subtly by creating artificial
memory pressure. This leads to a considerable
performance overhead on the system. This also
causes a large amount of memory to be unused
all the time to maintain the high number of pages
in the free pool, leading to resource wastage. The
attacker could keep the degradation subtle enough
to escape detection over extended periods.

Entropy Pool Contamination
This attack contaminates the entropy pool and the

polynomials used by the Pseudo-Random Number
Generator (PRNG) to stir the pools. The goal of

Table 2. Performance degradation exhibited by applications after the resource wastage attack

Application Before Attack After Attack Degradation (%)

file copy 49s 1m3s 28.57
compilation 2m 33s 2m 56s 15.03
file compression 8s 23s 187.5

52

Identifying Systemic Threats to Kernel Data

Figure 5. The Linux Random Number Generator

Entropy sources

prmemcsssssannannny

| CEEE

keyboard

™

]

ALl

“ Secondary W
Entropy Pool (blocking)
Primary
Entropy Pool
Urandom l[/dev/urandom
" Entropy Pool i | (non-blocking)

-

lesssasnsnnnsnnned

this attack is to degrade the quality of the pseudo
random numbers that are generated by the PRNG.
The kernel depends on the PRNG to supply good
quality pseudo random numbers, which are used
by all security functions in the kernel as well as
by applications for key generation, generating
securesessionid’s, etc. All applications and kernel
functions that depend on the PRNG are in turn
open to attack.

Background: The PRNG provides two inter-
facestouserapplications namely /dev/randomand
/dev/urandom as shown in Figure 5. The PRNG
depends on three pools for its entropy require-
ments: the primary pool, the secondary pool and
the urandom pool. The /dev/random is a blocking
interface and is used for very secure applications.
The device maintains an entropy countand blocks
ifthereisinsufficiententropy available. Entropy is
addedtothe primary pool from external eventssuch
as keystrokes, mouse movements, disk activity
and network activity. When a request is made for
random bytes, bytes are moved from the primary
pool to the secondary and the urandom pools. The
/dev/urandom interface on the other hand is non-
blocking. The contents of the pool are stirred when
the bytes are extracted from the pools. A detailed
analysis of the Linux random number generator
is available in (Gutterman, 2006).

Attack Description: This attack constantly
contaminates the entropy pool by writing zeroes

|

intoall the pools. Thisis done by loading an attack
module that consists of akernel thread. The thread
constantly wakes up and writes zeroes into the en-
tropy pools. Italso attacks the polynomialsthatare
usedtostirthe pool. Zeroing out these polynomials
nullifies a part of the extraction algorithm used
by the PRNG. The location of the entropy pool
is not exported by the Linux kernel. We can find
the location by simply scanning kernel memory.
Entropy pool has the cryptographic property of
being completely random (Shamir, 1999). Since
we know the size of the entropy pools, this can be
found by running a sliding window of the same
sizesthrough memory and calculating the entropy
of the data within the window. Kernel code and
data regions are more ordered than the entropy
pools and have a lower entropy value. The pool
locations can therefore be successfully located.
We measured the quality of the random num-
bersgenerated by using the diehard battery of tests
(Marsaglia, 1996). The results are summarized
in Table 3. Diehard is the suite of tests used to
measure the quality of random numbers generated.
Any test that generates a value extremely close to
0 or 1 represents a failing sequence. More about
the details of these tests can be found in (Mar-
saglia, 1996). We run the tests over ten different
10MB files that were generated by reading from
the /dev/random device. The table shows that
the sequence that is generated after attack, fails

53

Identifying Systemic Threats to Kernel Data

Table 3. Results from running the Diehard battery of tests after contamination of the entropy pool

File# bday operm binrnk6x8 cntls parkinglot | mindist sphere squeeze osum craps

1 0.765454 | 0.497607 | 0.197306 0.000000 | 0.159241 0.000000 | 0.893287 | 0.423572 | 0.641313 | 0.147407
2 0.044118 | 0.180747 | 0.143452 0.000000 | 0.012559 0.000000 | 0.055361 | 0.769919 | 0.002603 | 0.066102
3 0.079672 | 0.999996 | 0.467953 0.000000 | 0.132155 0.000000 | 0.001550 | 0.190808 | 0.032007 | 0.468605
4 0.009391 | 0.000334 | 0.010857 0.000000 | 0.400118 0.000000 | 0.000258 | 0.573443 | 0.051299 | 0.057709
5 0.059726 | 0.996908 | 0.754544 0.000000 | 0.065416 0.000000 | 0.212797 | 0.276961 | 0.009343 | 0.389614
6 0.384023 | 0.975071 | 0.003450 0.000000 | 0.004431 0.000000 | 0.021339 | 0.047575 | 0.139662 | 0.082087
7 0.002450 | 0.458676 | 0.014060 0.000000 | 0.002061 0.000000 | 0.000010 | 0.044232 | 0.068223 | 0.836221
8 0.001195 | 0.840548 | 0.115478 0.000000 | 0.192544 0.000000 | 0.001535 | 0.024058 | 0.000078 | 0.214631
9 0.427721 | 0.553566 | 0.138635 0.000000 | 0.311526 0.000000 | 0.071177 | 0.296367 | 0.003107 | 0.679244
10 0.654884 | 0.106287 | 0.212463 0.000000 | 0.072483 0.000000 | 0.212785 | 0.338967 | 0.122016 | 0.710536

miserably in two of the tests: cntls and mindist
and partially in the others. A failure in any one
of the tests means that the PRNG is no longer
cryptographically secure.

Impact: After the attack, the generated pseudo
random numbers are of poor quality, leaving the
system and applications vulnerable to crypta-
nalysis attacks.

Disable Pseudo-Random
Number Generator

This attack overwrites the addresses of the de-
vice functions registered by the Pseudo-Random
Number Generator (PRNG) with the function
addresses of the attack code. The original func-
tions are never invoked. These functions always
return a zero when random bytes are requested
from the /dev/random or /dev/urandom devices.
Note that though this appears similar to the attack
by traditional rootkits that hook into function
pointers, there is a subtle difference. Since this
particular device does not affect user-level view
of objects, this is not a target for achieving hid-
ing behavior and hence, not monitored by kernel
integrity monitors.

Background: Linux provides a flexible archi-
tecture where different file systems and devices
can use a common interface. This interface is

54

provided by a layer called the virtual file system
(VFS) layer. A new file system or a device pro-
vides a set of hooks when registering with the
VFS layer. Figure 6 depicts two file systems ext3
and MS-DOS and one device /dev/randomthatare
registered with the VFS layer. This enables user
applications to access files residing on both file
systems and the access to the device file with a
common set of system calls. The system call is
first handled by the VFS code. Depending on
where the file resides, the VFS layer invokes the
appropriate function registered by the file system
or device during registration. Some system calls
such as the close system call are directly handled
by the VFS layer, which simply requires release
of resources.

Attack Description: The kernel provides func-
tions for reading and writing to the /dev/random
and /dev/urandom devices. The data structures
used to register the device functions are called
random_state_ops and urandom_state_ops for
the devices /dev/random and /dev/urandom re-
spectively. These symbols are exported by the
2.4 kernel but are not exported by the 2.6 kernel.
We could find this data structure by first scanning
for function opcodes of functions present within
random_state_ops and urandom_state_ops. We
then used the function addresses in the correct
order to find the data structure in memory. Once

Identifying Systemic Threats to Kernel Data

Figure 6. File and device hooks in the Linux virtual file system (vfs) layer

write /tmp/data.txt

read /floppy/photo.jpg

read /dev/random

. Virtual File System (VES) Layer

4 Y

close il % s
/tmp/data.txt ' ¥
| /devirandom |
I I
Random
ext3 :
device
/tmp/data.txt /floppy/photo.jpg /dev/random

these data structures are located in memory, the
attack module replaces the genuine function
provided by the character devices with the attack
function. The attack function for reading from
the device simply returns a zero when bytes are
requested. After the attack, every read from the
device returns a zero.

Impact: All security functions within the
kernel and other security applications rely on
the PRNG to supply pseudo random numbers.
This attack stealthily compromises the security
of the system, without raising any suspicions
from the user.

Adding a New Binary Format

The goal of this attack is to invoke malicious
code each time a new process is created on the
system (Shellcode, 2006). While rootkits typically
achieve this form of hooking by modifying kernel
control data, such as the system call table, this
attack works by inserting a new binary format
into the system.

Attack. This attack operates by introducing a
new binary format into the list of formats supported
by the system. The handler provided to supportthis
format is malicious in nature. The binary formats
supported by asystem are maintained by the kernel

in a global linked list called formats. The binary
handler, specific to a given binary format, is also
supplied when a new format is registered.

A new process is created on the system, the
kernel creates the process address space, sets up
credentials and in calls the function search_bi-
nary_handler, whichisresponsible for loading the
binary image of the process from the executable
file. This function iterates through the formats list
to look for an appropriate handler for the binary
thatitisattempting to load. As ittraversesthis list,
it invokes each handler in it. If a handler returns
an error code ENOEXEC, the kernel considers
the next handler on the list; it continues to do
so until it finds a handler that returns the code
SUCCESS.

This attack works by inserting a new binary
format in the formats listand supplying the kernel
withamalicious handler thatreturnsthe error code
ENOEXEC each time it is invoked. Because the
new handler is inserted at the head of the formats
list, the malicious handler is executed each time
a new process is executed.

Impact: The attacker is able to successfully
invoke malicious code each time a new process
is created on the system.

55

ROOTKIT DETECTION VIA
AUTOMATED INVARIANT
INFERENCE

To automatically detect stealth attacks on the
kernel such as the ones discussed in the last sec-
tion, we propose a novel approach based upon
automatic inference of data structure invariants.
This approach is based on the hypothesis that
kernel data structures exhibit invariants during its
normal operation. A kernel rootkit that alters the
behavior of the kernel algorithms violates some
of these invariants and therefore can be detected.
This approach can uniformly detect rootkits that
modify both control and non-control data. To
evaluate this hypothesis, we built a prototype
Gibraltar, whose design and implementation, we
discuss below.

The key idea is to monitor the values of
kernel data structures during a training phase,
and hypothesize invariants that are satisfied by
these data structures. These invariants serve as
specifications of data structure integrity. For ex-
ample, an invariant could state that the values of
elements of the system call table are a constant
(anexample ofacontrol datainvariant). Similarly,
an invariant could state that all the elements of
the running-tasks linked list (used by the kernel
for process scheduling) are also elements of the
all-tasks linked list that is used by the kernel for
process accounting (an example of a non-control
data invariant) (Butler, 2005),

(Petroni, 2006). These invariants are then
checked during an enforcement phase; violation
of an invariant indicates the presence of a rootkit.
Because invariantsare inferred automatically and
uniformly across both control and non-control
data structures, the approach presented in this
section, overcomes the shortcomings of prior
rootkit detection techniques.

Because Gibraltar aims to detect rootkits,
it must execute on an entity that is outside the
control of the monitored kernel, such as a copro-
cessor (Petroni, 2004), (Zhang, 2002) or inside

56

Identifying Systemic Threats to Kernel Data

a separate virtual machine (Garfinkel, 2003). In
our architecture, Gibraltar executes on a separate
machine (the observer) and monitors the execu-
tion of the target machine (the target) as shown
in Figure 7. Both the observer and the target are
interconnected via a secure back-end network
using the Myrinet PCI intelligent network cards
(Myricom, n.d.) 1. The back end network allows
Gibraltar to remotely access the target kernel’s
physical memory. Gibraltar is built to infer data
structure invariants when supplied with raw
kernel memory as input. Since coprocessor and
VMM based external monitors use a similar
asynchronous monitoring technique to read the
target memory, Gibraltar can be easily adapted
to work with these infrastructures.

Figure 8 presents the architecture of Gibraltar.
It operates in two modes, namely, a training mode
and an enforcement mode. In the training mode,
Gibraltar infersinvariants on data structures of the
target’s kernel. Training happens in a controlled
environment on an uncompromised target (e.g.
a fresh installation of the kernel on the target
machine). In the enforcement mode, Gibraltar
ensures that the data structures on the target’s
kernel satisfy the invariants inferred during the
training mode.

AsshowninFigure 8, Gibraltar consists of four
key components (shown in the boxes with solid
lines). The page fetcher responds to requests by
the data structure extractor to fetch kernel

memory pages from the target. The data
structure extractor, in turn, extracts values of data
structures on the target’s kernel by analyzing raw
physical memory pages. The datastructure extrac-
tor also accepts as input the data type definitions
of the kernel running on the target machine and
a set of root symbols that it uses to traverse the
target’s kernel memory pages. Both these inputs
are obtained via an off line analysis of the source
code of the kernel version executing on the target
machine. The output of the data structure extractor
isthe setof kernel data structures onthe target. The
invariantgenerator processes these datastructures

Identifying Systemic Threats to Kernel Data

Figure 7. Gibraltar running on the Observer remotely fetches kernel snapshots from the target via the

Myrinet back end network

Target

DMA Transfer DMA Transfer
Myrinet NIC Myrinet NIC
Secure Backend
Network

and infers invariants. These invariants represent
properties of both individual data structures, also
called objects, (e.g. scalars, such as integer vari-
ables and arrays and aggregate data structures,
such as structs) as well as collections of data
structures (e.qg. linked lists). During enforcement,
the monitor uses the invariants as specifications
of kernel data structure integrity, which raises an
alertwhen an invariant is violated by a kernel data
structure. The following sections elaborate on the
design of each of these components.

The Page Fetcher

Gibraltar executes on the observer, which isisolat-
ed fromthe target system. Gibraltar’s page fetcher
is a component that takes a physical memory
address as input, and obtains the corresponding
memory page from the target. The target runs a
Myrinet PClI card to which the page fetcher issuesa
request for a physical memory page. Upon receiv-
ing a request, the firmware on the target initiates
a DMA request for the requested page. It sends
the contents of the physical page to the observer
upon completion of the DMA. The Myrinet card
on the target system runs an enhanced version of

Figure 8. Boxes with solid lines show components of Gibraltar. Boxes with dashed lines show data used

as input or output by the different components

it

___.I._____J

57

Identifying Systemic Threats to Kernel Data

Figure 9. Algorithm used by the data structure extractor

Input: (a) R: addresses of roots: (b) Data structure definitions.
Output: Set of all data structures reachable from R.
I. worklist = R
2. visited = ¢
3. snapshot = ¢:
4. while worklist is not empty do
Si addr = remove an entry from worklist,
6. visited = visited \) {addr},
) M = physical memory page containing addr:
8. obj = object at address addr in M ;
9. snapshot = snapshot \J value of obj:
10. foreach pointer p in obj do
11. if p & visired
12 worklist = worklist) {p}.
13. return snapshot:

the original firmware. Our enhancement ensures
that when the card receives a request from the
page fetcher, the request is directly interpreted
by the firmware and serviced.

The Data Structure Extractor

This component reconstructs snapshots of the
target kernel’s data structures from raw physi-
cal memory pages. The data structure extractor
processes raw physical memory pages using two
inputs to locate data structures within these pages.
First, it uses a set of root symbols, which denote
kernel data structures whose physical memory
locations are fixed, and from which all data struc-
tures on the target’s heap are reachable. In our
implementation, we use the symbols in the System.
map file of the target’s kernel as the set of roots.
Second, it uses a set of type definitions of the data
structures in the target’s kernel. Type definitions
are used as described belowto recursively identify
all reachable data structures. We automatically
extracted 1292 type definitions by analyzing the
source code of the target Linux-2.4.20 kernel us-
ing a CIL module (Necula, 2002).

58

The data structure extractor uses the roots
and type definitions to recursively identify data
structures in physical memory using a standard
worklist algorithm as shown in Figure 9. The
extractor first adds the addresses of the roots to a
worklist; itthen issues a request to the page fetcher
for memory pages containing the roots. It extracts
the values of the roots from these pages, and uses
their type definitions to identify pointers to more
(previously-unseen) datastructures. Forexample,
if a root is a C struct, the data structure extrac-
tor adds all pointer-valued fields of this struct to
the worklist to locate more data structures in the
kernel’s physical memory. This process continues
in a recursive fashion until all the data structures
in the target kernel’s memory (reachable from
the roots) have been identified. A complete set of
datastructures reachable from the roots is called a
snapshot. The datastructure extractor periodically
probes the target and outputs snapshots.

When the data structure extractor finds a
pointer-valued field, it may require assistance in
the form of code annotations to clarify the seman-
tics of the pointer. In particular, the data structure
extractor requires assistance when it encounters

Identifying Systemic Threats to Kernel Data

linked lists, implemented in the Linux kernel us-
ing the list_head structure. In Linux, other kernel
data structures (called containers) that must be
organized as a linked list simply include the list
head data structure. The kernel provides func-
tions to add, delete, and traverse list head data
structures. Such linked lists are problematic for
the data structure extractor. In particular, when it
encounters a list head structure, it will be unable
to identify the container data structure. To handle
such linked lists, we use the Container annotation.
The annotation explicitly specifies the type of the
container data structure and the field within this
type, to which the list head pointers refer. The
extractor uses this annotation and locates the
container data structure. In our experiments, we
annotatedall 163 annotations ofthe list_head data
structure in the Linux-2.4.20 kernel.

In addition to linked lists, Gibraltar may
also require assistance to disambiguate opaque
pointers (void *), dynamically allocated arrays
and untagged unions. For example, the extractor
would requirethe length of dynamically-allocated
arrays in order to traverse and locate objects in
the array. We plan to add support for dynamic
arrays, opaque pointers and untagged unions in
future work.

Because the page fetcher obtains pages from
the target asynchronously (without halting the
target), itis likely that the data structure extractor
will encounter inconsistencies, such as pointers
to non-existent objects. Such invalid pointers are
problematic because the data structure extractor
will incorrectly fetch and parse the memory re-
gion referenced by the pointer (which will result
in more invalid pointers being added to the work
list of the traversal algorithm). To remedy this
problem, we currently place an upper bound on
the number of objects traversed by the extractor. In
our experiments, we found that on an idle system,
the number of data structures in the kernel varies
between 40,000 and 65,000 objects. We therefore
place anupper bound of 150,000; the data structure
extractor abortsthe collection of new objectswhen

this threshold is reached. In our experiments, this
threshold was rarely reached, and even so, only
when the system was under heavy load.

The Invariant Generator

In the training mode, the output of the data struc-
ture extractor is used by the invariant generator,
which infers likely data structure invariants.
These invariants are used as specifications of data
structure integrity.

Toextractdatastructure invariants, we adapted
Daikon (Ernst, 2006), a state of the art invariant
inference tool. Daikon was developed to dynami-
cally infer invariants for application programs.
An invariant is a property that holds at a certain
point or points in a program; these are often used
in assert statements and for formal specifications.
Forapplication programs, invariants can be useful
mainly in program understanding. It can also be
used for generating test cases, predicting incom-
patibilities in component integration, automating
theorem proving and repairing inconsistent data
structures.

Daikon attempts to infer likely program
invariants by observing the values of variables
during multiple executions of a program. Daikon
first instruments the program to emit a trace that
contains the values of variables at selected pro-
gram points, such as the entry points and exits
of functions. It then executes the program on a
test suite, and collects the traces generated by the
program. Finally, Daikon analyzesthese tracesand
hypothesizes invariants—properties of variables
that hold across all the executions of the program.
Theinvariants produced by Daikon conformtoone
of several invariant templates. For example, the
template x == const checks whether the value of
a variable x equals a constant value const (where
const represents a symbolic constant; if x has
the constant value 5, Daikon will infer x ==5 as
the invariant). Daikon also infers invariants over
collections of objects. For example, if it observes
that the field bar of all objects of type struct foo

59

at a program point have the value 5, it will infer
the invariant “The fields bar of all objects of type
struct foo have value 5.”

We had to make three key changes to adapt
Daikon to infer invariants over kernel data
structures.

. Inference over snapshots. Daikon is
designed to analyze multiple execution
traces obtained from instrumented pro-
grams and extract invariants that hold
across these traces. We cannot use Daikon
directly in this mode because the target’s
kernel is not instrumented to collect ex-
ecution traces. Rather, we obtain values
of data structures by asynchronously ob-
serving the memory of the target kernel.
To adapt Daikon to infer invariants over
these data structures, we represent all the
data structures in one snapshot of the tar-
get’s memory as a single Daikon trace. As
described in 3.2, the data structure extrac-
tor periodically reconstructs snapshots of
the target’s memory. Multiple shapshots
therefore yield multiple traces. Daikon
processes all these traces and hypothesiz-
es properties that hold across all traces,
thereby yielding invariants over kernel
data structures

. Naming data structures. Because
Daikon analyzes instrumented programs,
it represents invariants using global vari-
ables and the local variables and formal
parameters of functions in the program.
However, because Gibraltar aims to infer
invariants on data structures reconstructed
from snapshots, the invariants output by
Gibraltar must be represented using the
root symbols. Gibraltar represents each
data structure in a snapshot using its name
relative to one of the root symbols. For
example, Gibraltar represents the head of
the all-tasks linked list, using the name

60

Identifying Systemic Threats to Kernel Data

init tasks->next task (here, init tasks is a
root symbol). The extractor names each
data structure as it is visited for the first
time.

In addition, Gibraltar also associates each
name with the virtual memory address of the data
structure that it represents in the snapshot. These
addresses are used during invariant inference,
where they help identify cases where the same
name may represent different data structures in
multiple snapshots. This may happen because of
deallocation and reallocation. For example, sup-
pose that the kernel deallocates (and reallocates,
at a different address) the head of the all-tasks
linked list. Because the name init tasks->next task
will be associated with different virtual memory
addresses before and after allocation, it represents
different data structures; Gibraltar ignores such
objects during invariant inference.

. Linked data structures. Linked lists are
ubiquitous in the kernel and, as demon-
strated later in 4.2, can be exploited sub-
tly by rootkits. It is therefore important to
preserve the integrity of kernel linked lists.
Daikon, however, does not infer invariants
over linked lists. To overcome this short-
coming, we represented kernel linked lists
as arrays in Daikon trace files, and lever-
aged Daikon’s ability to infer invariants
over arrays. We then converted the invari-
ants that Daikon inferred over these arrays
to invariants over linked lists.

Daikoninfersinvariants that conformto 75 dif-
ferent templates (Ernst, 2006), and infers several
thousand invariants over kernel data structures
using these templates. In the discussion below,
and inthe experimental results reported in section
4, we focus on five templates; in the templates
below, var denotes either a scalar variable or a
field of a structure.

Identifying Systemic Threats to Kernel Data

¢ Membership template (var € {a, b, c}).
This template corresponds to invariants
that state that var only acquires a fixed set
of values (in this case, a, b or c¢). If this
set is a singleton {a}, denoting that var is a
constant, then Daikon expresses the invari-
ant as var == a.

. Non-zero template (var != 0). The non-
zero template corresponds to invariants
that determine that a var is a non-NULL
value (or not 0, if var is not a pointer).

. Bounds template (var <= const), (var
>= const). This template corresponds to
invariants that determine lower and upper
bounds of the values that var acquires.

The three example templates discussed above
correspond to invariants over variables and fields
of C struct data structures. These invariants can
be inferred over individual objects, as well as
over collections of data structures (e.g. the fields
bar of all objects of type struct foo have value 5).
Invariants over collections describe a property
that hold for all members of that collection across
all snapshots.

. Length template (length(var) == const).
This template describes invariants over
lengths of linked lists.

. Subset template (colll TODO-SUBSET
coll2). This template represents invariants
that describe that the collection coll, is a
subset of collection coll,. This is used, for
instance, to represent invariants that de-
scribe that every element of one linked list
is also an element of another linked list.

The last two example templates are used to
describe properties of kernel linked lists. As re-
ported insection 4, in our experiments, invariants
that conformed to the Daikon templates sufficed
to detect all the conventional and the modern
stealth attacks on the kernel that we tested.
However, to accommodate for rootkits that only

violate invariants that conform to other kinds of
templates, we may need to extend Gibraltar with
more templates in the future. Fortunately, Daikon
supportsan extensible architecture. Newer invari-
ant templates can be supplied to Daikon, thereby
allowing Gibraltar to detect more attacks.

The Monitor

During enforcement, the monitor ensures that the
data structures in the target’s memory satisfy the
invariants obtained during training. As with the
invariant generator, the monitor obtains snapshots
from the data structure extractor, and checks the
datastructuresineach snapshotagainstthe invari-
ants. Thisensures thatany malicious modifications
to kernel memory that cause the violation of an
invariant are automatically detected.

Persistent vs. Transient Invariants

Theinvariantsinferred by Gibraltar can be catego-
rized as either persistent or transient. persistent
invariants represent propertiesthatare valid across
reboots of the target machine, provided that the
target’s kernel is not reconfigured or recompiled
between reboots. All the examples in Figures 11-
15 are persistent invariants.

An invariant is persistent if and only if the
names of the variables in the invariant persist
across reboots and the property represented by the
invariant holds across reboots. Thus, a transient
invariant either expresses a property of a variable
whose name does not persist across reboots or
represents a property that does not hold across
reboots. For example, consider the invariant in
Figure 10, which expresses a property of a struct
file operations object. This invariant is transient
because it does not persist across reboots. The
name of this object changes across reboots as it
appearsatdifferentlocationsin kernel linked lists;
consequently, the number of next and prevs that
appear in the name of the variable differ across
reboots.

61

Identifying Systemic Threats to Kernel Data

Figure 10. Example of a transient invariant. The name of the variable changes across reboots.

Init_fs->root->d_sb->s_dirty.next->i_dentry.next ->
d_child.prev->d_inode->i_fop.read == 0xeffobf60

Thedistinction between persistentand transient
invariants is important because it determines
the number of invariants that must be inferred
each time the target machine is rebooted. In
our experiments, we found that out of a total of
approximately 718,000 invariants extracted by
Gibraltar, approximately 40,600 invariants persist
across reboots of the target system.

Although it is evident that the number of
persistent invariants is much smaller than the
total number of invariants inferred by Gibraltar
(thus necessitating a training each time the target
is rebooted), we note that this does not reflect
poorly on our approach. In particular, the per-
sistent invariants can be enforced as Gibraltar
infers transient invariants after a reboot of the
target machine, thus providing protection during
the training phase as well. The cost of retraining
to obtain transient invariants can potentially be
ameliorated with techniques suchas live-patching
(Chen, 2006), (Arnold, 2008), which can be used
to apply patches to a running system.

EXPERIMENTAL RESULTS

This section presents the results of experiments
to test the effectiveness and performance of
Gibraltar at detecting rootkits that modify both
control and non-control data structures. We focus
on three concerns:

Detection accuracy. \We tested the effective-
ness of Gibraltar by using itto detect both publicly
available rootkits as well as those proposed in the
research literature (Shellcode, 2006), (Baliga,
2007), (Petroni, 2007). Gibraltar detected all these
rootkits (Section 4.2).

62

False positives. During enforcement Gibraltar
raises an alert when it detects an invariant viola-
tion; if the violation was not because of a mali-
cious modification, the alert is a false positive.
Our experiments showed that Gibraltar has a false
positive rate of 0:65% (Section 4.3).

Performance. We measured three aspects of
Gibraltar’s performance and found that itimposes
a negligible monitoring overhead (Section 4.4).

All our experiments are performed on a target
system with a Intel Xeon 2.80GHz processor with
1GB RAM, running a Linux-2.4.20 kernel (infra-
structure limitations prevented us fromupgrading
to the latest version of the Linux kernel). The
observer also has an identical configuration.

Experimental Methodology

Our experiments with Gibraltar proceeded as fol-
lows. We first ran Gibraltar in training mode and
executed a workload that emulated user behavior
(described below) on the target system. We config-
ured Gibraltar to collect fifteen snapshots during
training. Gibraltar analyzes these snapshots and
infers invariants. We then configured Gibraltar
to run in enforcement mode using the invariants
obtained from training. During enforcement, we
installed rootkits on the target system, and ob-
served the alerts generated by Gibraltar. Finally,
we studied the false positive rate of Gibraltar
by executing a workload consisting of benign
applications.

Workload. We chose the Lmbench (Mc\oy,
1996) benchmark as the workload that runs on
the target system. This workload consists of a
micro benchmark suite that is used to measure
operating system performance. These micro

Identifying Systemic Threats to Kernel Data

Table 4. Conventional rootkits for Linux, publicly available and found in research literature (Petroni,
2006). This table shows the data structures modified by the rootkit. Gibraltar successfully detects all

the rootkits.

Attack Name

| Data Structures Affected

Rootkits from Packet Storm [5].

Shtroj2, Synapsys-0.4, THC Backdoor

Adore-0.42, All-root, Kbd, Kis 0.9, Linspy2, Modhide, Phide, Rial, Rkit 1.01, | System call table

Adore-ng

Vfs hooks, udp recvmsg

Knark 2.4.3

System call table, proc hooks

Rootkits from research literature [19].

Hiding Process Attack

| all-tasks list

benchmarks measure bandwidth and latency for
common operations performed by applications,
such as copying to memory, reading cached files,
context switching, networking, file system opera-
tions, process creation, signal handling and IPC
operations. This benchmark therefore exercises
several kernel subsystems and modifies several
kernel data structures as it executes.

Detection Accuracy

We report the results obtained in the use of the
inferred invariants to detect conventional root-
kits and modern stealth attacks proposed by us
and other research literature (Shellcode, 2006),
(Baliga, 2007), (Petroni, 2007).

Detecting conventional rootkits. We used
fourteen publicly-available rootkits (Packetstorm,
n.d.) that modify kernel data structures to test the
effectiveness of Gibraltar. Most of these rootkits
hide user level objects by modifying function
pointers in the kernel. We also included one root-
kit proposed in the research literature (Petroni,
2006); this rootkit hides malicious processes by
altering non-control data. This rootkit relies on
the fact that process accounting utilities, such as
ps, and the kernel’s task scheduler consult differ-
ent process lists. The process descriptors of all
tasks running on a system belong to a linked list
called the all-tasks list (represented in the kernel

by the data structure init_tasks->next task). This
list contains process descriptors headed by the
first process created on the system. The all-tasks
list is used by process accounting utilities. In
contrast, the scheduler uses a second linked list,
called the run-list (represented in the kernel by
run_queue_head->next), to schedule processes
for execution. This rootkit removes the process
descriptor of a malicious user-space process from
the all-tasks list (but not from the run-list). This
ensures that the process is not visible to process
accounting utilities, but that it will still be sched-
uled for execution. This technique is also used by
the Windows rootkit named fu (Butler, 2005).

Table 4 summarizesthe listof the conventional
rootkits that we used in our experiments. Gibraltar
successfully detects all the above rootkits. Each
of these rootkits violated a persistent invariant.
All rootkits, except for the process hiding attack,
violated a object invariant conforming to the
template var == constant, where var is a function
pointer within the data structures modified by the
rootkit and constant is the value of the function
pointer. The process hiding attack violates the sub-
set invariant, run-list TODO-SUBSET all-tasks,
which states that each element in the run-list is
also an element of the all-tasks list. The process
hiding attack violates this invariant by removing
an entry from the all-tasks list and is therefore
detected by Gibraltar.

63

Identifying Systemic Threats to Kernel Data

Table 5. Modern stealth attacks on kernel data (Shellcode, 2006), (Baliga, 2007). This table shows the
data structure modified by the attack, the type of invariant violated and the template that the invariant

conforms to.

Attack Name Data Structures Affected Invariant Type Template
Disable Firewall struct nf_hooks[] Object Membership (constant)
Resource Wastage struct zone_struct Object Membership (constant)
Entropy Pool Contamination struct poolinfo Collection Membership

Disable PRNG struct random_state_ops Object Membership (constant)
Adding Binary Format formats list Collection Length

Detecting modern stealth attacks. We used
five stealth attacks developed by us and those
discussed in prior work (Shellcode, 2006), (Baliga,
2007) to test Gibraltar. Table 5 summarizes these
attacks, and shows the data structures modified by
the attack, the invariant type (collection/object)
violated, and the template that classifies the invari-
ant. Each of the invariants that was violated was a
persistentinvariant, which survives areboot of the
target machine. We discuss the invariants violated
by each attack in detail below. The details of the
first four attacks mentioned below are described
earlier in this chapter (Section 2).

Disable Firewall Attack

Gibraltar inferred the invariant shown in Figure 11
on the netfilter framework for the disable firewall
attack. This attack overwrites the hook with the at-
tack function, thereby violating the invariant, which
statesthatthe function pointernf_hooks[2][1].next.
hook is a constant. Because this attack modifies
kernel function pointers, it can also be detected
by SBCFI (Petroni, 2007), which automatically
extracts and enforces kernel control flow integ-

rity. In fact, function pointer invariants inferred
by Gibraltar implicitly determine a control flow
integrity policy that is equivalent to SBCFI.

Resource Wastage Attack

Gibraltaridentifiesthe invariants shown in Figure
12 for the three watermarks, manipulated by the
resource wastage attack. These values are initial-
ized upon system startup, and typically do not
change in an uncompromised kernel. The attack
sets the pages min, pages low and pages high
watermarks to 210,000, 215,000 and 220,000
respectively. The values of these watermarks are
close to 225,280, which is the total number of
pages available on our system. Gibraltar detects
this attack because the invariants shown in Figure
12 are violated.

Entropy Pool Contamination Attack

Figure 13 shows the invariants that Gibraltar
identifies for the coefficients of the polynomial
that is used to stir entropy pools in an uncompro-
mised kernel (the poolinfo data structure shown

Figure 11. An invariant inferred on the netfilter hook. Firewalls are disabled by modifying the function

pointer, thereby violating the invariant.

nf hooks[2][1].next.hook == 0xc03295b0

64

Identifying Systemic Threats to Kernel Data

Figure 12. Invariants inferred by Gibraltar for zone_table[1], a data structure of type zone_struct (Gi-
braltar infers similar invariants for the other elements of the zone table array).

zone table[1].pages min == 255
zone table[1].pages low ==510
zone table[1].pages high == 765

Figure 13. The invariants satisfied by the coefficients of the polynomial used by the stirring function in the
PRNG. The coefficients are the fields of the struct poolinfo data structure, shown above as poolinfo.

poolinfo.tapl € {26, 103}
poolinfo.tap2 € {20, 76}
poolinfo.tap3 € {14, 51}
poolinfo.tap4 € {7, 25}
poolinfo.tap5 == 1

in this Figure is represented in the kernel by one
of random_state->poolinfoorsec_random_state-
>poolinfo). The coefficients are initialized upon
system startup, and must never be changed during
the execution of the kernel. The attack violates
these invariants when it zeroes the coefficients of
the polynomial. Gibraltar detects this attack when
the invariants are violated.

Disable PRNG Attack

Theinvariantsinferred by Gibraltar on our system
for the random fops and urandom fops are shown
in Figure 14. The attack code changes the values
of the above two function pointers, violating the
invariants. As with Attack 1, this attack can also
be detected using SBCFI.

Adding Binary Format Attack

Gibraltar infers the invariant shown in Figure 15
on the formats list on our system, which has two
registered binary formats. The size of the list is
constant after the system starts, and changes only
when a new binary format is installed. Because
this attack inserts a new binary format, it changes
the length of the formats list violating the invari-
ant in Figure 10; consequently, Gibraltar detects
this attack.

Invariants and False Positives

Invariants. As discussed in Section 3, Gibraltar
uses Daikon to infer invariants; these invariants
express properties of both individual objects, as
well as collections of objects (e.g., all objects of
the same type; invariants inferred over linked

Figure 14. Invariants inferred for the PRNG function pointers. These are replaced to point to attacker

specified code, thereby disabling the PRNG.

random_fops.read == 0xc028bd48
urandom_fops.read == 0xc028bda8

65

Identifying Systemic Threats to Kernel Data

Figure 15. Invariants inferred on the formats list; the attack modifies the length of the list

length(formats) ==

lists are also classified as invariants over collec-
tions). Table 6 reports the number of invariants
inferred by Gibraltar on individual objects as well
as on collections of objects. Table 6 also presents
a classification of invariants by templates; the
length and subset invariants apply only to linked
lists. As this table shows, Gibraltar automatically
infers several thousand invariants on kernel data
structures.

False Positives. To evaluate the false positive
rate of Gibraltar, we designed a test suite consist-
ing of several benign applications, that performed
the following tasks: (a) copying the Linux kernel
source code from one directory to another; (b)
editing a text document (an interactive task); (c)
compiling the Linux kernel; (d) downloading
eightvideofiles fromthe Internet; and (e) perform
file system read/write and meta data operations
using the 10Zone benchmark (Norcott, 2001).
This test suite ran for 42 minutes on the target.
We enforced the invariants inferred using the

Table 6. Invariants and false positives classified
by the type of invariant and the template used
to mine the invariant. Gibraltar infers a total of
718,940 invariants. Average false positive rate:
0.65%.

Invariants False Positives

Templates Object Collection | Object Collection
Member- 643,622 422 | 0.71% 1.18%
ship

Non-zero 49,058 266 | 0.17% 2.25%
Bounds 16,696 600 | 0% 0%
Length NA 4,696 | NA 0.66%
Subset NA 3,580 | NA 0%

66

workload described in 4.1.

The false positive rate is measured as the ratio
of the number of invariants for which violationsare
reported and the total number of invariants inferred
by Gibraltar. Table 6 presents the false positive rate,
further classified by the type of invariant (object/
collection) that was erroneously violated by the
benign workload, and the template that classifies
the invariant. As this table shows, the overall false
positive rate of Gibraltar was 0.65%.

Performance

We measured three aspects of Gibraltar’s perfor-
mance: (a) training time, i.e. the time taken by
Gibraltarto observe the targetand infer invariants;
(b) detection time, i.e. the time taken for an alert
to be raised after the rootkit has been installed,;
and (c) performance overhead, i.e. the overhead
on the target system as a result of periodic page
fetches via DMA.

Training time. The training time is calculated
as the cumulative time taken by Gibraltar to
gather kernel data structure snapshots and infer
invariants when executing in training mode.
Overall, the process of gathering 15 snapshots
of the target kernel’s memory requires approxi-
mately 25 minutes, followed by 31 minutes to
infer invariants, resulting in a total of 56 minutes
for training.

Trainingiscurrently atime-consuming process
because our current prototype invokes Daikon to
infer invariants after collecting all the kernel snap-
shots. Training time can potentially be reduced by
adapting Daikon to use an incremental approach
toinferinvariants. Inthisapproach, Daikonwould
hypothesize invariants using the first snapshot,

Identifying Systemic Threats to Kernel Data

in parallel with the execution of the workload to
produce more snapshots. As more snapshots are
produced, Daikon can incrementally refine the
set of invariants. We leave this enhancement for
future work.

Detection time. WWe measure the detection
time as the interval between the installation of the
rootkitand Gibraltar detecting thatan invarianthas
beenviolated. Because Gibraltar traversesthe data
structures inasnapshotand checks invariants over
each data structure, detection time is proportional
to the number of objects in each snapshot and the
order inwhichthey are encountered by the traversal
algorithm. Gibraltar’s detection time varied from
a minimum of fifteen seconds (when there were
41,254 objects in the snapshot) to a maximum of
132 seconds (when there were 150,000 objects in
the snapshot). On average, we observed a detec-
tion time of approximately 20 seconds.

Monitoring overhead. The Myrinet PCI card
fetchesraw physical memory pages fromthe target
using DMA,; because DMA increases contention
on the memory bus, the target’s performance will
potentially be affected. We measured this overhead
using the Stream benchmark (McCalpin, 1995),
a synthetic benchmark that measures sustainable
memory bandwidth. Measurement is performed
over four vector operations, namely, copy, scale,
add and triad and averaged over 100 executions.
The vectors are chosen so that they clear the
last-level cache in the system, forcing data to be
fetched from main memory. Gibraltar imposes a
negligible overhead of 0.49% on the operation of
the target system.

CONCLUSION

Conventionally, rootkits tamper with the kernel
to achieve stealth, while most of the malicious
functionality is provided by accompanying user
space programs. Therefore, stealth is achieved by
trying to hide the objects, such as files, processes
and network connections presentin user space be-

longing to the attacker. Since user space programs
can access or modify user space objects using
system calls, the rootkitis limited to manipulating
code or data structures that are reachable from the
system call paths alone.

We demonstrated a new class of stealth attacks
that do notemploy the traditional hiding behavior
used by rootkits but are stealthy by design. They
manipulate data within several different sub-
systems in the kernel to achieve their malicious
objectives. They are based upon the observation
that kernel rootkits need not necessarily be limited
to manipulation of data structures that lie within
the system call paths. Other subsystems withinthe
kernel arealso vulnerable to such attacks. To dem-
onstrate this threat, we built several new attacks.
We have designed attack prototypes to demonstrate
that such attacks are realistic and indicative of a
more systemic problem in the kernel.

Previously proposed rootkit detection tech-
niques largely detect attacks that modify kernel
control data; techniques that detect non-control
data attacks, especially on dynamically-allocated
data structures, require specifications of data
structure integrity to be supplied manually. In this
chapter, we presented a novel rootkit detection
technique that detects rootkits uniformly across
control and non-control data. The approach is
based on the hypothesis that several invariants
are exhibited by kernel data structures at runtime
during its correct operation. A rootkit that modi-
fies the behavior of the kernel algorithms violates
some of these invariants. We presented a prototype
Gibraltar, a tool that automatically infers and
enforces specifications of kernel data structure
integrity. Gibraltar infers invariants uniformly
across control and non-control kernel data, and
enforces these invariants as specifications of data
structure integrity. Our experiments showed that
Gibraltar successfully detects rootkits that modify
both control and non-control data structures, and
doessowithalow false positive rate and negligible
performance overhead.

67

FUTURE WORK

Research over the past few years has made sig-
nificant strides in the development of stealth at-
tacks and tools and techniques for monitoring the
integrity of the kernel. Numerous novel research
challenges have also emerged that show promise
towards building more robustand comprehensive
kernel integrity monitors. Below, we discuss
some interesting directions for future work in
this area.

Data Structure Repair

Detection of rootkits that tamper with the kernel
data structures has received a lot of attention over
the past five years. Detection techniques are able
to identify the data structures that are modified
by the attack. While some work has been done in
containment of ongoing attacks (Baliga, 2008),
the commonly employed approach in the face
of such attacks is to format the disk and install
a new operating system image. The current re-
sponse procedure besides being tedious and time
consuming does not scale with the current attack
growth rate.

Kernel integrity monitors such as Gibraltar
discussed in this chapter monitor invariants ex-
hibited by kernel data. These are used as integrity
specificationsandare checked during runtime. The
monitor can therefore, identify the data structure
and the invariant that is violated when an alert is
raised by the system. In such cases, repair of the
datastructure comprises of restoring the invariant
that is violated. For example, if a data structure
exhibits the constancy invariant, then a violation
occurs when the rootkit replaces this value with
a different one. The repair action comprises of
restoring the old value. While restoring other more
complex invariants might require sophisticated
methods, we believe that data structure repair is
a promising research direction.

To secure the monitor, currentapproaches iso-
late it from the system that it monitors. As aresult,

68

Identifying Systemic Threats to Kernel Data

the monitor is limited to external asynchronous
memory based scans. It is unable to acquire locks
from the operating system that is concurrently
executing and modifying the data structures that
are monitored. Repairing data structures requires
the monitor to be able to make modifications to
kernel data structures without affecting the cor-
rectness of kernel code. This also requires the
invention of better mechanismsfor realizinginline
data structure repairs.

Mining Complex Invariants

Complex invariants that express conjunction
or disjunction between simple invariants might
express interesting properties. It is also possible
to mine more complex invariants that express re-
lationships between different data structure fields
or between different data structures altogether. In-
variants mightalso be mined using more complex
invariant templates. Verifying a large number of
invariants has performance implications for the
monitor. Therefore a careful study of the kind of
invariants that are more likely to be violated by
attacks will provide some insight into the type of
invariants that are more interesting than others.

REFERENCES

Anti rootkit software, news, articles and forums.
(n.d.) Retrieved fromhttp://antirootkit.com/.

Arnold, J. B. (2008). Ksplice: An automatic sys-
tem for rebootless linux kernel security updates.
Retrieved from http://web.mit.edu/ksplice/doc/
ksplice.pdf.

Baliga, A. (2009). Automated Detection and
Containment of Stealth Attacks on the Operat-
ing System Kernel. Ph. D Thesis, Department of
Computer Science, Rutgers University.

Identifying Systemic Threats to Kernel Data

Baliga, A., Ganapathy, V., & Iftode, L. (2008).
Automatic Inference and Enforcement of Kernel
Data Structure Invariants. In Proceedings of the
2008 Annual Computer Security and Applications
Conference, Anaheim, CA.

Baliga, A., Iftode, L., & Chen, X. (2008). Auto-
mated Containment of Rootkit Attacks. Elsevier
Journal on Computers and Security, 27(Nov),
323-334.

Baliga, A., Kamat, P., & Iftode, L. (2007). Lurk-
ing in the shadows: Identifying systemic threats
to kernel data. In Proceedings of the 2007 IEEE
Symposium on Security and Privacy, Oakland,
CA.

Butler, J. (2005). Fu rootkit. http://www.rootkit.
com/project.php?id=12.

Chen, H., Chen, R., Zhang, F., Zang, B., & Yew,
P.-C. (2006). Live updating operating systems
using virtualization. Proceedings of the 2nd
international conference on Virtual execution
environments, Ottawa, Canada.

Ernst, M. D., Perkins, J. H., Guo, P. J., McCa-
mant, S., Pacheco, C., Tschantz, M. S., & Xiao,
C. (2007). The Daikon system for dynamic de-
tection of likely invariants. Science of Computer
Programming, 69.

Garfinkel, T., & Rosenblum, M. (2003). A virtual
machine introspection based architecture for in-
trusion detection. In Proceedings of the Network
and Distributed Systems Security Symposium,
San Diego, CA.

Gutterman, Z., Pinkas, B., & Reinman, T. (2006).
Analysis of the linux random number generator.
In Proceedings of the 2006 IEEE Symposium on
Security and Privacy, Oakland, CA.

MacAfee AVERT Labs. (2006). Rootkits, part 1
of 3: A growing threat. MacAfee AVERT Labs
Whitepaper.

Marsaglia, G. (1996). The marsaglia random
number cdrom including the diehard battery of
tests of randomness. Retrieved from http://stat.
fsu.edu/pub/diehard

McCalpin, J. D. (1995). Memory bandwidth and
machine balance in current high performance
computers. IEEE Technical Committee on Com-
puter Architecture newsletter.

McWoy, L., & Staelin, C. (1996). Lmbench: por-
table tools for performance analysis. In Proceed-
ings of the USENIX Annual Technical Conference,
May 1996.

Moore, D., Shannon, C., Brown, D. J., Voelker,
G. M., & Savage, S. (2006). Inferring internet
denial-of-service activity. ACM Transactions on
Computer Systems.

Myricom: Pioneering high performance com-
puting. (n.d.). Retrieved from http://www.myri.
com

Necula, G.C., McPeak, S.,Rahul, S.P., & Weimer,
W. (2002). Cil: Intermediate language and tools
for analysis and transformation of ¢ programs. In
Proceedings of the 11th International Conference
on Compiler Construction, Grenaoble, France.

Nick, J., Petroni, L., Fraser, T., Walters, A., &
Arbaugh, W. A. (2006). An architecture for
specification-based detection of semantic integrity
violations in kernel dynamic data. In Proceedings
of the USENIX Security Symposium, Vancouver,
Canada.

Nick, J., Petroni, L., & Hicks, M. (2007). Auto-
mated detection of persistent kernel control-flow
attacks. In Proceedings of the 14th ACM confer-
ence on Computer and Communications Security,
Alexandria, VA.

Norcott, W. (2001). lozone benchmark. Retrieved
from http://www.iozone.org

Packetstorm. (n.d.). Retrieved from http://packet-
stormsecurity.org/UNIX/penetration/rootkits/.

69

Petroni, N., Jr., Fraser, T., Molina, J., & Arbaugh,
W.A. (2004). Copilot-acoprocessor-based kernel
runtime integrity monitor. In Proceedings of the
USENIX Security Symposium, San Diego, CA.

Rutkowska, J. (2007). Defeating hardware based
ramacquisition. Blackhat Conference, Arlington,
VA.

Schuba, C. L., Krsul, I. V., & Kuhn, M. G. spaf-
ford, E. H., Sundaram, A. & Zamboni, D. (1997).
Analysis of a denial of service attack on tcp. In
Proceedings of the 1997 Symposium on Security
and Privacy, Oakland, CA.

Shamir, A., & van Someren, N. (1999). Playing
hide and seek” with stored keys. In Proceedings
ofthe Third International Conference on Financial
Cryptography, London, UK.

70

Identifying Systemic Threats to Kernel Data

Shellcode Security Research Team. (2006). Regis-
tration weakness in linux kernel’s binary formats.
Retrieved from http://goodfellas.shellcode.com.
ar/own/binfmt-en.pdf.

Wang, H., Zhang, D., & Shin, K. (2002). Detect-
ing syn flooding attacks. In Proceedings of the
INFOCOM Conference, Manhattan, NY.

Wang, Y., Beck, D., Vo, B., Roussev, R., & Ver-
bowski, C. (2005). Detecting stealth software
with strider ghostbuster. Proceedings of the 2005
International Conference on Dependable Systems
and Networks, Yokohama, Japan.

Zhang, X., van Doorn, L., Jaeger, T., Perez, R.,
& Sailer, R. (2002). Secure coprocessor-based
intrusion detection. In Proceedings of the 10th
workshop on ACM SIGOPS European workshop,
St-Emilion, France.

71

Chapter 4

The Last Line of Defense:
A Comparison of Windows and Linux
Authentication and Authorization Features

Art Taylor
Rider University, USA

ABSTRACT

With the rise of the Internet, computer systems appear to be more vulnerable than ever from security
attacks. Much attention has been focused on the role of the network in security attacks, but evidence
suggests that the computer server and its operating system deserve closer examination since it is ulti-
mately the operating system and its core defense mechanisms of authentication and authorization which
are compromised in an attack. This chapter provides an exploratory and evaluative discussion of the
authentication and authorization features of two widely used server operating systems: Windows and

Linux.

THE LAST LINE OF DEFENSE: THE
OPERATING SYSTEM

The number of computer security incidents re-
ported fromvarious forms of attacks hasincreased
significantly since the introduction of the Internet
(CERTY, Yegneswaran, Barford, & Ullrich, 2003).
Thoughitisclearthatthe introduction of the Inter-
netcoupled with the decreased cost of networking
has helped to pave the way for attackers, the end
result of most malicious attacks is the alteration

of the host operating system. This alteration is
often with the intent of propagating the malicious
program and continuing the attack (virus, Trojan
horse) or potentially damaging, stealing or alter-
ing some content on the host machine. While this
type of attack may be aided by the network and
security weaknesses therein, the attack could not
be successful without ultimately compromising
the host operating system. While much attention
has focused on securing the network, since it is
ultimately the operating system which is compro-
mised, acloser examination of the defense mecha-

Copyright © 2010, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

nisms of the operating system may be warranted
(Losocco, Smalley, Mucklebauer, Taylor, Turner,
& Farrell, 1998). Security weaknesses in host
operating systems are therefore a major concern
for the IT practitioner. If unwanted modification
of the host system can be prevented, then the at-
tack may be thwarted despite any weaknesses in
the network which allows the attacker to contact
the host machine.

There hasbeenadistinctiondrawnin research
betweenapplication security and operating system
security. It has become increasingly clear, how-
ever, that such a distinction is academic and that
inpractice malicious programsand the individuals
who create them make no such distinction. Mal-
ware such as Code Red exploited weaknesses in
both application and operating system security
(Staniford, Paxson, & Weaver, 2002). What is
required isanend-to-end solution, one that consid-
ers not only the distributed nature of the current
computing environment and the network, but the
close relationship between the application program
and the operating system (Howell & Kotz, 2000;
Saltzer, Reed, & Clark, 1981; Thompson, 1984).
Recent focus on the concept of endpoint security
represents an additional effort to understand and
mediate these risks (Kadrich, 2007).

This chapter will examine specific security
features of the host operating system inadescrip-
tive and exploratory manner. By understanding
the security controls available at the operating
system level and the security weaknesses in those
systems it is possible understand how to better
prevent attacks on these systems.

Operating systems and their underlying secu-
rity mechanisms are clearly a varied landscape
which over time can be quite fluid. This chapter
will focus on two common server operating
systems: Microsoft Windows Server 2003 and
Red Hat Enterprise Linux Server 5. Rather than
refer to specific versions of these operating sys-
tems, this chapter will use the terms Windows
and Linux to refer to Windows Server 2003 and
Red Hat Enterprise Linux Server 5 respectively.

72

The Last Line of Defense

(As this chapter goes to press, the next version
of Windows server operating system, Windows
Server 2008, is in Beta 3; the updates to security
features in this release considered relevant to
this discussion will be identified and evaluated
in this chapter.)

Security and Operating System
Security Architecture

Early computers operated in closed environments
withexperienced and generally trusted personnel.
The introduction of time-sharing with multiple
concurrent processes required the consideration
of how to manage the resources of the computer
relative to the processes using the computer.
Initial computer security concerns had focused
on protecting executing tasks or processes from
each other. Lampson (1974) expanded onthat with
a broad definition of protection that involved all
resources under control of the operating system:
memory, CPU registers, files (disk resources) and
password security. Lampson proposed protection
domains to define access rights and objects and
associated object access lists. Under this para-
digm, access to objects is enforced in relation to
the protection domain of the user. The evalua-
tion of operating system security requires a firm
definition of the somewhat nebulous concept
of the functionality and purpose of a computer
operating system. An expansive definition could
complicate qualitative comparisons with other
operating systemswhich have not been developed
with such a broad definition. For this reason, this
discussion will consider the operating system
the set of software which controls access to the
hardware resources (CPU, disk, peripherals) of
the server and will focus on specific operating
system functionality which is of central impor-
tancetosecurity, inparticular, authenticationand
authorization (Lampson, 2004). The definitions
used here identify authenticating principals as
those which involve the process of determining
which security principal made a request, and

The Last Line of Defense

authorizing access as the process of determining
who is trusted (authorized) to perform specific
operations on an object.

In order to evaluate operating system security
a set of standard principles is useful to provide a
basis for discussion and comparison. Such a stan-
dard set of principles was established by Saltzer
and Schroeder (1975) and remain relevant today
(see Table 1). The evaluation presented here will
examine these security principles in relation to
the operating security functions of authentication
and authorization. This evaluation will add ac-
countability to this list since this has evolved as
acentral tenet of security on multi-user operating
systems. This is defined as our ability to trust
that the action performed on the system has by a
known security principal.

Apples to Oranges: Comparing
Windows and Linux

Any assessment of Windows and Linux must take
into account the institutional and developmental
background of these two operating systems.
The Windows operating system is a product of
a business entity with specific organizational
goals. This business entity seeks to maintain
the revenue stream generated by the sale of its

Table 1. Computer security principles

software product through continual upgrades
to the product. Since users are not compelled
to upgrade software, the business entity needs
to convince them of the need to upgrade by
addressing previous product shortcomings and
adding functionality to the product. The design
and structure of the Windows operating system
reflects this strategy in the continued addition of
featurestothe core operating system. The Internet
Information Server Web server, the built-in DNS
and DHCP services and Active Directory direc-
tory services all represent additions to the core
Windows operating system. The functionality
and design of many Windows security features
also reflect this approach where specific features
and functionality have been added as part of the
core operating system. This composition of the
operating system is a key component of a specific
business model chosen by Microsoft. Rather than
leave it to customers to piece together a complete
computing solution, they make the selection for
them and produce a product which is complete,
more robust than the previous version and easy
to use since components do not need to be added
to provide the computing solution the customer
is seeking.

The composition of the Linux operating sys-
tem reflects a different approach. Linux is a Unix

Principle

Description

least privilege

A user’s security permissions should only be adequate for the task being performed.

economy of mechanism

The system must be sufficiently small and simple to allow verification and implementation.

complete mediation

Access to each object in the system must be checked by the operating system.

open design

The design of the system must be open to scrutiny by the community.

separation of privilege

A process which requires multiple security conditions to be satisfied is more reliable than a

process which only requires one condition to be satisfied.

least common mechanism

The amount of security mechanism in use by more than one task should be minimized.

psychological acceptability

The human interface should be designed for ease-of-use so that excessive complexity does
not hinder user acceptance of the security mechanism.

fail-safe defaults.

System defaults should be restrictive such that the default is lack of access.

73

variant, a version of original Unix developed at
Bell Labs in New Jersey in 1971 for academic
and research work (Ritchie, 1978). Linux was
developed about 20 years after the original Unix
and is not a product owned by a single company.
Its design is purposely sparse and modular. The
core operating system component is the Linux
kernel and it is this kernel that is packaged with
nUMerous open source operating system utilities
and programs to create the various Linux distri-
butions available today. There is no overarching
business strategy and accompanying update
cycle which impacts the development of Linux
distributions. This combined with the fact that
the business model under which Linux distribu-
tion vendors operates is new and volatile have
led to a varied landscape of Linux distributions.
Though some Linux distributions are marketed
as complete solutions, most Linux users will add
a variety of additional components to the system
to provide the complete solution. Linux distribu-
tion vendors consider this a benefit of using a
modular, flexible operating system and refer to
thisapproachasa “best-of-breed approach” where
the user can choose the components best suited
to their environment.

To identify the best approach to developing an
operating system or to define which components
aretruly part of an operating system is beyond the
scope of this chapter. But in order to make a valid
“apples-to-apples” comparison of Windows and
Linux security, itisimportantto acknowledge the
factthat Windows installations commonly use just
the components provided with the operating sys-
tem but Linux installations commonly add com-
ponents to complete the computing environment.
Any assessment of authentication, authorization
must take this into consideration and discuss the
security components commonly added to com-
plete the Linux computing environment in order
to make reasonable comparison. For purposes of
this comparison we assume a standard Windows
distribution which effectively is bundled with
significant security and administration features

74

The Last Line of Defense

such as Active Directory, 11S and DNS, and Red
Hat Linux ES with SELinux extensions.

The following sections will provide an evalu-
ation of Windows and Linux security in relation
to authentication and authorization. The next
section will evaluate authentication, evaluating
Windows and then Linux. The section following
will evaluate authorization, evaluating Windows
and then Linux.

AUTHENTICATION
Windows Authentication

Authentication on Windows allows auser to login
to either a local workstation or a network domain
of Windows hosts. A login process requests the
user name and password interacts with the local
security authority to request a security access
token which contains the security identifier
(SID) for the user. The Security Account Man-
ager (SAM) database contains user and group
names, security identifiers and passwords stored
in encrypted form. The SAM database is stored
in the Windows registry but is not accessible by
system users. In Windows, the login process and
local security authority are processes which run
in user-space. A security reference monitor is
executed inkernel-space and is used to determine
whether or not a user has permission to access a
system object (WindowsSecurity.com).

In larger installations of Windows clients,
Active Directory (AD) is commonly for user au-
thenticationand is considered a central component
of the Windows server product line. Active Direc-
tory isacustomization of the LDAP (Lightweight
Directory Access Protocol) for storage of user
information (user name, password) and Kerberos
to provide trusted logins over the network. A
detailed description of AD is beyond the scope
of this chapter, but key authentication features
are relevant to this discussion. AD provides both
authenticationand authorization features over one

The Last Line of Defense

or more network segments with the collection of
network hosts considered the domain. Security
rules are related to domains. Users using cli-
ent computers which use AD for authentication
request authentication from an AD server in a
network login process which is generally similar
tothe standard Windows login (without AD). Later
revisions of Windows have simplified administra-
tion of AD through security trust models which
provide a hierarchy of trust relationships with the
ability to inherit trust models.

Within Windows, domain security models
from multiple domains can be combined to manage
security across multiple serversand organizational
departments connected over a network. In many
cases, userswho have authenticated in one domain
need to use resources in another domain. This
requires one domain to trust another domain’s
users with what is known as inter-domain trust.
These trust relationships are transitive by default
and are reflected through the hierarchy of the
domain tree, thus simplifying administration.
Trust relationships can be one-way or reciprocal
and hierarchies of trust can be established (NT
Security, 2005).

Use of AD enhances Windows security by pro-
viding simplified administration of the complex
security models of medium to large sized organi-
zations. Thisimproves Windows implementation
of the psychological acceptability security prin-
ciple by making it easier, and thus more likely, to
implement a consistent enterprise-wide security
model. The secure login process also enhances
accountability since we are more certain the user
is who they say they are.

Windows authentication is started using a
trusted path (Loscocco et al, 1998; Yee, 2002),
a trusted communication channel between the
user and the secure system which can only be
initiated by the user. A user name and password
prompt are displayed using the GINA (Graphical
Identification and Authentication) facility. This is
areplaceable DLL which can be substituted with
another DLL to provide adifferent form of authen-

tication (for example, Smartcards or fingerprint
readers) (MSDN Tech Report: GINA). The user
then enters a user name and password and the
local security authority is asked to authenticate
the user using the password provided. The local
security authority then invokes the authentication
package provided with Windows, or may invoke
a custom package to provide authentication.

The password provided by the user is converted
to a cryptographic hash. The plain text version
of password entered by the user is discarded and
this cryptographic hash is compared to the cryp-
tographic hash stored in a user database for the
user being authenticated. Ifthe entries match, then
the security access token for that user is returned
containing the security identifier (SID) for the
user. The Windows security identifier uniquely
identifies every user and group on the local host
or in the domain and is used to determine autho-
rization privileges throughout the system (NT
Security, 2005).

Logging in to a Windows domain uses a
slightly different approach to the authentication
process. Since a domain login will most likely
be performed over a network, a honce (a unique
number generated only once) is used to reduce the
possibility of a replay attack to gain passwords
for a system. This nonce is used to encrypt the
password before sending it from the client to the
domain server. As with the local login, if the en-
crypted password matches, the user is considered
authenticated and the security access token for
the user is returned.

Analternative network login facility known as
LAN Manager (LM) is supported in Windows for
backwards compatibility. This login facility has
anumber of well-known and significant security
weaknesses as revealed by applications which
can crack these passwords within 5-15 minutes
(Lemos, 2003). Despite these weaknesses, the
storage of these weak passwords has persisted for
sometime asadefault option onthe many desktop
versions of Windows though it is possible to turn
the feature off in some versions.

75

Windows provides a runas utility which
allows a user to run a program as another user,
effectively allowing the user to change their
identity to execute a specific program. The user
must provide the user name and password of the
user identity under which the program will run.
This feature raises issues with the several secu-
rity principles. The user of this feature implies
that an unprivileged user has been given access
to a privileged account and thereby violating the
“least privilege” principle since with the execu-
tion of the privileged program the user is now
considered a privileged user. This also raises the
potential violation of “accountability” since a
single user has assumed two identities within a
single session.

Linux Authentication

User authentication in the Unix world has tradi-
tionally varied fromimplementation toimplemen-
tation with a core set of authentication services
usually available. This assessment will examine
the basic authentication services provided with
Linuxandthenexaminethe featuresand function-
ality provided through common Linux extensions
which provide additional security.

Linux basic authentication is performed us-
ing a login process which authenticates a user
and provides a “shell” in which the user can then
operate. The login process checks to see that lo-
gins are allowed and prompts for the user name.
If the user is attempting to login as root (an
administrator account), the login processrestricts
the login to specific terminals or locations. If the
user is allowed to continue the process, the plain
text password entered and the salt value (a 12 bit
random number) retrieved from the password file
is added and the result is encrypted with DES or
MDO5 encryption (depending on how the systemis
configured). This encrypted value is then checked
against a password file. If a match is found, the
useridandgroup id of the userare returned (Bacic,
n.d.; Morris & Thompson, 1979).

76

The Last Line of Defense

Earlier Linux versions used a one-way DES
encryption algorithm and stored the result along
with a user name, user ID and group ID in a file
readable by all users (/fetc/passwd). It is still pos-
sibletodothisin Linux butanoptiontouseamore
secure MD5 encryption algorithm and store the
results in a file readable only by the administra-
tor (/etc/shadow) is available during installation
and is recommended by Red Hat (Red Hat Linux
Technical Guide). Once the user has logged in, a
user id and group id are associated with the user
andare later usedto determine accessibility rights
for objects on the system.

While early versions of Linux used the basic
authentication services described in previous
paragraphs, most installations now use the Plug-
gable Authentication Module (PAM). PAM is a
product of efforts by the former Open Software
Foundation (currently the Open Group) to address
shortcomings and variations in authentication,
account management, and session management
across Unix variants. When PAM is installed,
Linux uses an abstraction layer to communicate
an authentication request to the PAM subsystem.
The PAM subsystem then chooses one or more
modules to perform the authentication.

The use of a PAM login module which sup-
ports LDAP (Lightweight Directory Access
Protocol) is used in many Linux installations to
allow network authentication to be performed
using an LDAP server. The Kerberos utility is
also used for authentication, an approach similar
to that of Window’s domain authentication and
allowsauthentication realmsto be established and
inter-realm trust relationships to be configured
(Kerberosl). BothPAM and Kerberos provide sim-
plifiedadministration of larger Linux installations,
thus enhancing the Linux implementation of the
“psychological acceptability” security principle.
Kerberos also improves upon accountability since
it provides a stronger login mechanism which
improves trust.

Linux provides aswitch-user (su) utility which
allowsauserinaparticular sessiontoauthenticate

The Last Line of Defense

as anew user. This utility requires all users other
than the root user to enter the password for the
user identity they are trying to assume. Alterna-
tively, a program can run with a set of privileges
different than the set of privileges associated with
the user without performing authentication as the
user. This can be done by setting a specific file
system identifier for the program being executed
with the setuid bit. This feature has the effect
of allowing a user executing a program to as-
sume the identity of another user (the owner of
the executable file that is the program) without
authentication. Though commonly used in early
versions of Unix, current security best practices
discourages the use of the setuidbit. Aswiththe
Windows runas utility, the use of these features
are contrary to the tenets of the “least privilege”
principle and reduces the “accountability” of the
users on the system.

By default, non-root users, users who do not
have super-user privileges, may shutdown the
system. Configuration parameters in Linux can
be changed to restrict this capability to a specific
set of users.

AUTHORIZATION

Windows Authorization

Windows authorization involves a set of user and
group identifiers for each user and group on the
system. Objects on the system (files, directories,
peripherals) have associated access control lists
(ACL) which identify which users and groups can
access an object. Actions permitted are reading,
executing, writing, and deleting. Users can belong
to one or more group.

Authorization in Windows is enforced by the
security reference monitor running in kernel-
space. An access control list identifies the users
or groups that can access an object. The security
reference monitor manages the request for the
object by the program (on behalf of the user). First

the access denied entries in the list are checked
and if any match the security identifier (SID) of
the user requesting the resource, no other access
control list entries are checked and access is de-
nied. Next the access allowed entries are checked
until enough entries are found to grant access to
the object. If there are not enough entries found to
grant access to the object, or there are no entries
found then object access is denied.

An administrator account exists in Windows
which providesasupreme (super-user) set of privi-
leges. Anadministrator can setand change access
control lists and can grant or deny user privileges
and canaccess any object onthe Windows system
regardless of the access control list entries for the
object. Windows supports a number of different
administrator accounts each with different levels
of authorization.

Windows also providesaccess control facilities
to perform certain system actions such as system
shutdown or backup. These are referred to as user
rights and can be assigned to specific users (Win-
dows Privileges). Windows Integrity Controls
(WIC) available in Vista provides capabilities
similar to MAC but does not provide the same
level of security granularity. WIC is a mandatory
access control which overrides discretionary ac-
cesscontrols such as file permissions and manages
the interaction of objects only allowing the object
initiating the action to interact with objects of the
same or lower privilege. Anobjectwhich attempts
to interact with an object of higher privilege will
be denied regardless of the permissions of the
user. WIC authorizations are associated with an
object, not the user.

WIC provides stronger authentication and a
finer granularity of control than discretionary
access controls, but it appears to have beenimple-
mented primarily to address the damage caused
by malware such as virus and worms and does
not go as far as MAC in providing robust control
over the interaction of objects. Objects which
are considered associated with the Internet are
given low WIC priority and thus have difficulty

77

making changes to the operating system. This
feature improves Windows implementation of
fail-safe defaults in providing mandatory rather
than justdiscretionary controlsand also improves
the implementation of complete mediation by the
operating system by improving the granularity of
that mediation. (Note that as this chapter goes to
press, it is not clear that WIC will be in Windows
Server 2008.)

Linux Authorization

By default, Linux uses a discretionary access
control approach to authorization. Authoriza-
tion privileges are either read, write, or execute.
The objects under the control of the operating
system are files and directories and special files
which provide access to device drivers (Bacic,
n.d.; Ritchie, 1978). When a program attempts to
access an object in Linux, a system call is made
which requests that the kernel return a handle
(reference) to the object. The request specifies an
operation as read, write, or execute for the object.
The ability to delete an object is implied by the
write permission.

When an object request has been made, the
kernel first checks to determine whether or not
the user has permission to use the object. If user
permissions on the file match the user permis-
sions of the program requesting the object, then
the kernel will move to the next step. In this
step, the privilege type for the user is evaluated.
If the privilege type on the object is suitable for
the operation being requested, the object handle
is returned to the object. If no user permissions
on the file are found to match the user requesting
the object, then group permissions are checked.
If the group identifier for the user matches that of
the file, then the next step is to determine which
access privilege will be used. If no suitable access
privileges are found which satisfy the access be-
ing requested then the program is not permitted
to use the object.

78

The Last Line of Defense

Linux Security Modules and
Mandatory Access Controls

In response to heightened security concerns and
a Linux user-base which is expanding to larger
mission critical operations there has been an ef-
fort to provide extensible and flexible security
features in Linux without having the operating
system kernel source code fracture into numerous
variants. The Linux Security Module was designed
to provide a lightweight, general purpose, access
control framework which supports kernel-space
mediation of object access (Wright, Cowan, Mor-
ris, Smalley, & Kroah-Hartman, 2002).

Linux Security Modules (LSM) provide aplug-
gable architecture for the enforcement of security
authorization by the kernel. A strict, finely-grained
authorization model can be substituted using an
LSM module, or a less-restrictive, discretionary
access model could be used instead by using a
different LSM module.

Security-Enhanced Linux (SELinux) provides
mandatory access controls (MAC) and role-based
access control using LSM. MAC allows a set of
permissions to be defined for subjects (users, pro-
grams and processes) and objects (files, devices).
It is based on the principal of least privilege and
allows an administrator to grant an application
just the permissions needed to perform its task.
Permissions (authorization) can be assigned notto
the user but to the application (Karsten, n.d.).

ASSESSMENT

Table 2 summarizes the assessment of the security
features of authentication and authorization in
Windows and Linux. Itis clear fromthis table that
both Windows and Linux have provided adequate
solutions for a number of the principles cited by
Saltzer and Schroeder.

Recent releases of Windows and Linux have
both attempted to improve implementations of
least privilege and fail-safe defaults, more no-

The Last Line of Defense

Table 2. Summary of assessment

Principle Windows Linux
least privilege Partial Yes
economy of mechanism Partial Partial
complete mediation Yes Yes
open design No Yes
separation of privilege Partial Partial
least common mechanism nfa n/a
psychological acceptability Yes Partial
fail-safe defaults No Yes
accountability Yes Yes

tably in Windows where it can be argued that
many security exploits took advantages of these
weaknesses. Fail-safe defaults have been an issue
in previous versions of Windows with the default
storage of weak LM passwords. Likewise least
privilege was often violated through adependency
of operating system utilities and a number of ap-
plications of running at administrator privilege
level. Least privilege issues are addressed in the
Vista release of Windows through WIC but at
this time (prior to the release of Windows Server
2008) it is still unclear that this feature will be
in Windows Server 2008 and whether the Vista
implementation of mandatory access controls
will completely address the problem of persistent
least privilege failures in Windows applications.
Fail-safe defaults have been addressed partly
through various patches to the Windows OS and
partly through WIC whichwill force more careful
consideration of access privileges on the part of
Windows developers.

Windows developers have put a great deal of
effort into easing administration of security poli-
cies at the enterprise level. This effort improves
the psychological acceptability of Windows and
is superior to the Linux environment where in the
past it often required installation of one or more
packages to implement enterprise-wide secu-
rity policies (for example Kerberos and LDAP).

Recent efforts by vendors such as Red Hat have
addressed this through bundling of packages for
security hardened distributions, but Windows AD
still has the advantage in ease of administration
(psychological acceptability).

While it has no specific bearing on authentica-
tionorauthorization, the principle of opendesignis
not met by Windows. Thoughthisisnotasurprise
given the nature of the Windows’ development
and the view that the underlying source code is
the intellectual property of Microsoft, the idea
that this diminishes the quality of the security
code as proposed by Saltzer and Schroeder has
some bearing on this discussion. The following
sectionswill extend thisdiscussion in more detail,
assessing these security principles in terms of
authentication and authorization.

Evaluation of OS Implementation of
Security Principles

The principle of least privilege raises concern
with both operating systems. According to Saltzer
and Schroeder “every program and every user
of the system should operate using the least set
of privileges to complete the job” (1975, p. 7).
Compliance with this principle is troublesome
in a large part because of the history of each
operating system.

79

Windows legacy environment (DOS, Windows
95)isthat ofasingle user computer not necessarily
connected to the network where any security that
existed was implemented largely through physical
security mechanisms (a lock on the computer;
the computer in a locked office). These early PC
operating systems were single user systems and
did not limitaccessibility to any part of the system.
If a user had access to the computer, the user had
access to all components of the computer. Thus
programs operating in this environment had ac-
cess to operating system resources. By nature of
this design, any programs running in this legacy
Windows environment violated the principle of
least privilege.

For business policy reasons, Microsofthaslong
been committed to providing backwards compat-
ibility with legacy applications. Consequently, in
order to run many of these legacy applications in
a Windows environment which supports access
privileges, these programs must operate with
administration privileges, privileges in excess of
“what is needed to complete the job” (Saltzer &
Schroeder, 1975, p. 6).

Linux provides the ability for a program to
assume rights in excess of what the user running
the program has available. Whether or not this is
required would need to be evaluated on a case to
case basis, but it is possible that many of these
applicationsviolate the principle of least privilege
and their execution under different user accounts
provides questionable accountability.

Linux provides a super-user account known
as the root account, which has access rights and
control over all objects on the operating system.
Theexistence of thisaccountviolates the principle
of least privilege since the actions performed
using this account rarely require complete and
unfettered access to operating system resources.
For example, administration of the printer queue
does not require the ability to delete all files on
the system as the root account allows.

Linux with MAC provides robust control of
privileges by allowing a set of permissions to be

80

The Last Line of Defense

defined for security principals (objects) such as
users, programs or processes and security objects
such files or devices. It is based on the principal
of least privilege and allows an administrator to
grant an application only the permissions needed
to perform its task. This feature also improves
the implementation of the principle of complete
mediation and fail-safe defaults in providing
mandatory rather than just discretionary control
over the interaction of operating system objects
(security principals). This provides a much better
implementation of the least privilege principle
than current versions of Windows.

Windows provides a similar set of capabilities
withtheadministratoraccountbutprovides
the ability to create other accounts which have
some but not all of the administrator account
privileges. Using this capability, administrative
accounts could be established with various gra-
dations of security required for administrative
tasks (for example, a backup account to perform
backups, a network account to perform network
maintenance). The proper use of these limited
administrative accounts provides better compli-
ance with the principle of least privilege.

Both the Linux root account and the Win-
dows administrator account exist largely
for convenience reasons. The Linux operating
system is derived from the Unix operating system
which began inanacademicresearchenvironment
where access security was not a major concern.
As Unix matured, however, it quickly became a
best practices standard to severely limit the use
of the root account when running Unix. For this
reason, few legacy applications running on Linux
use root account privileges and it continues to be
widely discouraged.

The ubiquitous buffer overflow attack has
been used extensively on Windows platforms
over the past five years (CERT2, 2003; CERTS3,
2005; Microsoft-1; Yegneswarean et al, 2003).
This attack involves exploiting memory bounds
within a program (usually a network program)
and loading the overrun memory with a different

The Last Line of Defense

program (Bates, 2004). Once the new program
is loaded, the program which has been exploited
executes the new program code which has been
loaded into the overrun buffer. These exploits
are in part due to an inadequate least privilege
implementation onthe host operating system. Any
Windows exploit which involves installation of
software on the host operating system is poten-
tially the result of account privileges assigned to
an application in excess of what was needed by
theapplication (CERT Incident Note IN-2001-09).
Such exploits are rare on Linux and even when
they do occur, the exploit does not always achieve
root access permissions and are thus limited in
the amount of malicious activity which can be
performed on the system (CERT Vulnerability
Note VU#596387).

The principle of economy of mechanism sug-
gests that the system under examination must be
small and open to inspection. It is most likely
that Saltzer and Schroeder were proposing that
the operating system being examined would be
sufficiently small as to allow a quick security
audit. Both Linux and Windows have grown to be
large, complex operating systems with numerous
modules used for authentication and authorization.
It is not clear that either operating system would
fully conform to this principle.

The principle of complete mediation applies
to the manner in which the core operating system
manages security. Thisoperating system operation
was a concern when Saltzer and Schroeder wrote
their principles in 1975, but modern operating
systems provide adequate implementations of this
principle. Both Windows and Linux check the
permissions of objects in kernel-space. Media-
tion is thorough and complete in both operating
systems.

The principle of opendesignalso appliestothe
ability toauditthe security operations of operating
system. Linux isan opensource operating system
which allows examination of its source code and
therefore complies with this principle. Windows
is proprietary source code and Microsoft does not

generally allow examination of its source code
so therefore Windows does not comply with this
principle.

Theprinciple of separation of privilege recom-
mends that more than one security mechanism
should be used to implement security features.
In relation to authentication and authorization,
Windows and Linux have had limited implemen-
tation of this feature. With the addition of WIC
and MAC which add mandatory access controls
to the legacy discretionary access controls of
the operating system, separation of privilege
has improved in both operating systems though
additional mechanisms could be added, for ex-
ample defaulting to both biometric and password
authentication, or providing multiple levels of
authentication for a security principle. (Though
WIC is definitely a part of the Windows desktop
operating system, it is not clear if it will be part
of the Windows Server 2008 release.)

The principle of least common mechanism
applies to implementation of internal operating
system security and control of system tasks. It is
not practical to evaluate this principle in relation
to authentication and authorization.

Withregardtofail-safe defaults, both Windows
and Linux provide installation default accounts,
but unlike previous versions of both operating
systems they no longer use default passwords.
Passwords are chosen during installation and
if password best practices are followed, an ac-
ceptable level of authentication security should
be maintained. An additional level of security is
provided with mandatory access controls. The
implementation of these controls in SELinux pro-
vides robust control over the default behavior of
applications. A Windows (Vista) implementation
of this control provides some controls but lacks
the complete implementation of MAC and itisun-
certainwhetherthiswill become part of Windows
Server 2008. Currently Linux provides the most
complete implementation of this principle.

In evaluating their default password authenti-
cation methods, the use of password encryption

81

does differ. Linux uses a password salt, arandom
value generated and added to the users password
before encryption. This increases the difficulty of
guessing the password with a brute force attack.
Windows does not use a password encryption salt
which combined with other weaknesses has led
to some well publicized concerns about the ease
of cracking Windows passwords (Lemos, 2003).
A fair analysis of Windows authentication must
however consider the user of AD to provide au-
thentication. AD has become the common method
for user authentication for Windows systems. The
AD password does not have the password weak-
nesses of LM passwords and essentially provides
a secure authentication process and enhances the
authorization process.

Considering the principle of psychological ac-
ceptability, using Active Directory the Windows
network authentication scheme is more robustand
flexible, making administration of authentication
and authorization easier. Similar domain security
administration is possible with Linux (LDAP +
Kerberos), but is currently more difficult to ad-
minister than its Windows counterpart. Though
there are incompatibility issues with using Linux
and Windows network authentication together
(@ common requirement in today’s information
technology centers), these incompatibilities are
not insurmountable and are not severe enough
to change this assessment.

Though it does not fall under the categories
established by Saltzer and Schroeder (1975), ac-
countability issues should be considered under
authentication and authorization. General shared
user accounts should be limited and discouraged
sinceauseraccountshared amongst multiple users
does not provide accountability for the actions per-
formed by that user account on the system (since
it could be one of many users). For this reason,
authentication for shared accounts should either
be eliminated or severely limited by the system.
In Windows, the *“guest” account is commonly
used as a shared account and is now disabled by
default. In Linux, the “nobody” account is com-

82

The Last Line of Defense

monly used by a number of programs but login
is disabled by default.

SUMMARY AND CONCLUSION

Inevaluating the authentication and authorization
of Windows and Linux on the basis of Saltzer and
Schroeder’ssecurity principlesand accountability,
Linux distributions of SELinux using MAC have
an advantage in authentication and authorization.
The lack of open design in Windows limits the
auditability of its authentication and authorization
features and is considered a detriment. Mali-
cious software running in user-space is the most
common cause of security exploits. Mandatory
access controls (MAC) provide a higher level
of security which can mitigate weaknesses in
application security. These controls add another
layer of security to the management of authori-
zation requests by the operating system and thus
improve the Linux implementation of separation
of privilege and the default behavior of applica-
tions (fail-safe defaults). Windows does not cur-
rently provide animplementation of MAC in their
server product and consideration of this reduces
the authentication and authorization security of
that operating system.

Windows implementation of network security
with AD demonstrates the benefits of psychologi-
cal acceptability in security features. As Saltzer
and Schroeder understood, providing ease of use
greatly improves the likelihood that the security
feature will be used (psychological acceptability).
The ability to create consistent security policies
and the ability to implement them throughout an
enterprise is a significant benefit. Windows has
an advantage in this area as Linux implementa-
tions of such features have had limited develop-
ment and must contend with the predominance of
Windows client operating system on the desktop
and the persistent interoperability issues that
exist in integrating Windows authorization and
authentication features with Linux.

The Last Line of Defense

Auditing the security of operating systems in
complexenterprise environments involves evalu-
ation of a number of factors which is beyond the
scope of this chapter. The evaluation presented
represents a start. A next step would be the ex-
pansion of evaluative criteria in addition to the
security principles identified here followed by the
assignment of statistical weights for those crite-
ria. The statistical weights used would represent
the perceived value of those security criteria to
the enterprise. Aggregation of those weights
would provide a representative score for each
operating system which could then be combined
with other qualitative criteria to arrive at a final
assessment.

REFERENCES

Bacic, E. M. (n.d.). UNIX & Security. Canadian
System Security Centre, Communications Se-
curity Establishment. Retrieved January 7, 2005
from http://andercheran.aiind.upv.es/toni/unix/
Unix_and_Security.ps.gz

Bates, R. (2004). Buffer overrun madness. ACM
Queue, 2(3).

CERT1 (2004). CERT, [Data File]. Accessed on
December 20, 2004 from http://www.cert.org/
cert_stats.html

CERT2 (2003). Incident note IN-2001-09, Code
Red II: Another worm exploiting buffer over-
flow In IIS indexing service DLL. Retrieved on
December 20, 2004 from http://www.cert.org/
incident_notes/IN-2001-09.html

CERT3 (2005). CERT Vulnerability Note
VU#596387, Icecast vulnerable to buffer overflow
via long GET request. US-CERT Vulnerability
Notes Database. Retrieved on January 4, 2005
from http://www.kb.cert.org/vuls/id/596387

Kadrich, M. (2007). Endpointsecurity. New York:
Addison-Wesley Professional.

Howell, J. & Kotz, D. (2000). End-to-end autho-
rization. Proceedings of the 4th Symposium on
Operating Systems Design and Implementation
(151 164). San Diego, CA.

Karsten, W. (n.d.). Fedora Core 2, SELinux
FAQ. Retrieved on January 5, 2005 from http:/
fedora.redhat.com/docs/selinux-fag-fc2/index.
htmI#id3176332

Kerberosl (n.d.). Kerberos: the Network Authen-
tication Protocol. Retrieved January 5, 2005 from
http://web.mit.edu/kerberos/www/

Lampson, B. (1974). Protection. SIGOPS Operat-
ing System Review, 8, 18-24.

Lampson, B. (2004). Computer security in the
real world. IEEE Computer, 37, 37-46.

Lemos, R. (2003). Cracking Windows passwords
in seconds. CNET News.com. Retrieved July 22,
2003 from http:/news.zdnet.com/2100-1009_22-
5053063.html

Loscocco, P. A., Smalley, S. D., Mucklebauer,
P. A, Taylor, R. C., Turner, S. J., & Farrell, J. F.
(1998). The inevitability of failure: The flawed
assumption of security in modern computing
national security agency.

Microsoft-1, Microsoft Security Bulletin MS03-
026, Buffer Overrun In RPC Interface Could Al-
low Code Execution (823980) revised September
10,2003, Retrieved onJanuary 7, 2005 from http:/
www.microsoft.com/technet/security/bulletin/
MS03-026.mspx

Microsoft-2, Microsoft, Inc. (2005). Loading and
Runninga GINADLL. (n.d.). Retrieved January 7,
2005 from http://whidbey.msdn.microsoft.com/
library/default.asp?url=/library/en-us/security/
security/loading_and_running_a_gina_dll.asp

Morris, R., & Thompson, K. (1979). Password
security: A case history. Communications of the
ACM, 22 , 594-597.

83

MSDN Technical Library, Interactive Authentica-
tion (GINA). Retrieved on December 21, 2004
from http://msdn.microsoft.com/library/default.
asp?url=/library/en-us/secauthn/security/interac-
tive_authentication.asp

NT Security (2005). Network strategy report: Win-
dows NT security. Retrieved on January 5, 2005
from http://www.secinf.net/windows_security/
Network_Strategy Report_ Windows_NT_Se-
curity.html

Red Hat-1, Red Hat Linux Reference Guide,
Shadow Passwords. Retrieved January 6, 2005
from http://www.redhat.com/docs/manuals/
linux/RHL-9-Manual/ref-guide/s1-users-groups-
shadow-utilities.html

Ritchie, D. M. & Thompson, K. (1978). The UNIX
time-sharing system. The Bell System Technical
Journal, 57, 1905-1920.

Ritchie, D. M. (1979). On the Security of UNIX,
in UNIX SUPPLEMENTARY DOCUMENTS,
AT &T.

Saltzer, J. H., Reed, D. P., & Clark, D. D. (1984).
End-to-end arguments in system design. ACM
Transactions on Computer Systems, 2 , 277-
288.

The Last Line of Defense

Saltzer, J. H., & Schroeder, M. D. (1975). The
protection of information in computer systems.
Proceedings of the IEEE, 63, 1278-1308.

Samar, V. & Schemers, R. (1995). Unified Login
with Pluggable Authentication Modules (PAM).
Request For Comments: 86.0, Open Software
Foundation (October 1995).

Staniford, S., Paxson, V., & Weaver, N. (2002).
How to own the Internet in your spare time. Pro-
ceedings of the 11" Usenix Security Symposium,
149-167.

Thompson, K. (1984). Reflections on trusting trust.
Communication of the ACM, 27, 761-763.

Wright C., Cowan C., Morris J., Smalley S. &
Kroah-Hartman G. (2002). Linux security mod-
ules: General security supportfor the Linux kernel.
Proceedings of Usenix 2002.

Yee, K. User Interaction Design for Secure Sys-
tems 2002

Yegneswaran, V., Barford, P. & Ullrich, J. (2003).
Internet intrusions: Global characteristics and
prevalence, 138-147. New York: ACM Press.

This work was previously published in the Handbook of Research on Information Security and Assurance, edited by J. Gupta
and S. Sharma, pp. 518-528, copyright 2009 by Information Science Reference (an imprint of 1GI Global).

84

Section 2
Efficient Memory Management

86

Chapter 5

Swap Token:
Rethink the Application of the
LRU Principle on Paging to
Remove System Thrashing

Song Jiang
Wayne State University, USA

ABSTRACT

Most computer systems use the global page replacement policy based on the LRU principle to reduce
page faults. The LRU principle for the global page replacement dictates that a Least Recently Used (LRU)
page, or the least active page in a general sense, should be selected for replacement in the entire user
memory space. However, inamultiprogramming environment under high memory load, an indiscriminate
use of the principle can lead to system thrashing, in which all processes spend most of their time waiting
for the disk service instead of making progress. In this chapter, we will rethink the application of the
LRU principle on global paging to identify one of root causes for thrashing, and describe a mechanism,
named as swap token, to solve the issue. The mechnism is simple in its design and implementation but
highly effective in alleviating or removing thrashing. A key feature of the swap token mechanism is that
it can distinguish the conditions for an LRU page, or a page that has not been used for relatively long
period of time, to be generated and accordingly categorize LRU pages into two types: true and false
LRU pages. The mechanism identifies false LRU pages to avoid use of the LRU principle on these pages,
in order to remove thrashing. A prototype implementation of the swap token mechanism in the Linux
kernel as well as some experiment measurements are presented. The experiment results show that the
mechanism can consistently reduce the program execution slowdown in a multiprogramming environment
including SPEC2000 programs and other memory-intensive applications by up to 67%. The slowdown
reductions mainly come from reductions of up to 95% of total page faults during program interactions.
This chapter also shows that the mechanism introduces little overhead to program executions, and its
implementations on Linux (and Unix) systems are straightforward.

DOI: 10.4018/978-1-60566-850-5.ch005

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of 1GI Global is prohibited.

Swap Token

INTRODUCTION

The virtual memory system allocates physical
memory to multiple concurrently running pro-
grams in a computer system through a global
page replacement algorithm, especially when
the aggregate memory demand is larger than
the available physical memory space. A com-
monly used replacement algorithm in a virtual
memory management is the global Least Recent
Used (LRU) replacement, which selects an LRU
memory page, or the least actively used page, for
replacement throughout the entire user memory
space of the system. According to the observed
common memory reference behavior, the LRU
replacement policy takes the assumption that
a page will not be used again in the near future
if it has not been accessed for a certain period
of time. In a single programming environment
where only one process is running at a time, this
assumption as well as the corresponding LRU
principle, which always selects LRU pages for
replacement -- hold well for many application
programs, leading to an efficient memory use
for their execution. However, as the assumption
and the principle are directly adopted in memory
management designs and implementations for
multiprogramming systems, many of computing
practitioners can experience following difficulty
in their program executions. When the aggregate
memory demand of multiple concurrently running
programs exceedsthe available user memory space
to a certain degree, the system starts thrashing
--- none of the processes are able to establish
their working sets, causing a large number of
page faults in the system, low CPU utilization,
and a long delay for each process. Although a
large amount of CPU cycles are wasted due to
the excessive page faults in the shared use of the
memory, people seem to have accepted this real-
ity, and to believe that these additional cycles are
unavoidable due to the memory shortage and due

to the fairness requirement for the concurrently
running programs.

As the LRU principle is based on access
patterns exhibited in one program’s execution,
a direct application of the principle on the con-
currently running programs is problematic and
may cause system thrashing. Let us take a close
look into the way an LRU replacement policy is
implemented in a multiprogramming system. An
allocated memory page of a process will become
a replacement candidate according to the LRU
principle if the page has not been accessed for
a certain period of time under two conditions:
(1) the process does not need to access the page;
and (2) the process is conducting page faults (a
sleeping process) so that it is not able to access
the page although it might have done so without
the page faults. We call the LRU pages generated
on the first condition true LRU pages, and those
on the second condition false LRU pages. These
false LRU pagesare produced by the time delay of
page faults, not by the access delay of the process.
Therefore, this delay does not necessarily hint
that the page is not going to be accessed again
by the process soon, or the LRU assumption is
not applicable for the false LRU pages. However,
LRU page replacement implementations do not
distinguish these two types of LRU pages, and
treats them equally by attempting to replace any
LRU pages!

Whenever page faults occur due to memory
shortage in a multiprogramming environment,
false LRU pages of a process can be generated,
which will weaken the ability of the process to
achieve its working set. For example, if a process
does not access its already obtained memory
pages on the false LRU condition, these pages
may become replacement candidates (the LRU
pages) when the memory space is being demanded
by other processes. When the process is ready to
use these pages in its execution turn, these LRU
pages may have been replaced to satisfy memory

87

demands from other processes. The process then
has to ask the virtual memory system to retrieve
these pages back probably by generating and
replacing false LRU pages from other processes.
The false LRU pages may be cascaded among
the concurrently running programs, eventually
causing system into thrashing, inwhich processes
chaotically compete for pages by swapping inand
out pages frequently, but are unable to establish
their working sets and make little progress, wast-
ing CPU cycles.

Such a problem can be very serious for the
following two reasons. First, these LRU pages
are produced by the time delay of page faults,
not by the access delay of the process. The LRU
assumption is not held. Thus, the probability of
accessing these pages soon is much greater than
that of accessing true LRU pages, which produces
high page fault ratios. Second, the delay from
page fault penalty increases with the increase
of the number of page faults due to increasingly
congested disk. The increased page fault penalty
could produce even more false LRU pages. Pro-
cesses receiving many page faults are the ones
that demand memory space dynamically and the
ones that incrementally establish their working
sets. On the other hand, a process that requests a
stable working set in a short period of time and
then frequently accesses it in its entire execution,
could soon get the working set established and
probably keep it, or keep a major part of it in its
lifetime. Therefore, it suffers the least from the
system thrashing.

BACKGROUNDS OF
THRASHING PROTECTIONS

Researchers in the operating system field have
proposed several schemes to protect system from
thrashing during program interactions, and even
implemented some in practical systems. The
framework of local page replacements [Alderson
et al. 1972] and working set models [Denning

88

Swap Token

1968-1] have been designed for the purpose.
Once a thrashing is detected, load controls [Den-
ning 1968-2] can be used to eliminate it. In this
section, we will briefly overview these schemes
and techniques, and discuss their limitations,
which motivates the design of the swap token
mechanism.

Local Page Replacement

Although most paging systems use the global page
replacement, the local page replacement has been
proposed to protect systems from thrashing in a
multiprogramming environment. Alocal replace-
ment requires that the paging system select pages
foraprocessonly fromitsallocated memory space
when no free pages can be found in their memory
allotments. Unlike the global replacement policy,
the local policy needsamemory allocation scheme
to respond to the need of each process. Two com-
monly used policies are equal and proportional
allocations, which cannot capture dynamically
changing memory demand of each process [Al-
derson etal. 1972]. As aresult, the memory space
may not be well utilized. On the other hand, an
allocation dynamically adapting to the memory
demands of individual programs will actually
turn the scheme into the global replacement. The
VMS [Kenah et al. 1984] is a representative op-
erating system using a local replacement policy,
in which the memory is partitioned into multiple
independent areas, each of which is localized to
a collection of processes that compete with one
another for memory space. With this scheme,
system administrators can guarantee that a pro-
cess, or a collection of processes, will always
at least keep a certain percentage of memory.
Unfortunately, this scheme can be difficult to
administer [Lazowska et al. 1978]. Allocating
too small a number of pages to a partition can
result in excessive swapping, whereas setting
the number too high can cause underutilization
of memory [Lazowska et al. 1978]. Researchers
and system practitioners seem to have agreed on

Swap Token

that a local policy is not an effective solution for
virtual memory management.

The Working Set Model

Denning [Denning 1968-1] proposes the work-
ing set model to measure the current memory
demand of a running program in the system. A
working set of a program is a set of its recently
accessed pages. Specifically, at virtual time t,
the program’s working set W,, is the subset of all
pages of the program which has been accessed in
the previous 6 virtual time units (the working set
window). The task’s virtual time is a measure of
the duration the program has control of the pro-
cessor and is executing instructions. A working
set replacement algorithm is used to ensure no
pages inthe working set of arunning program will
be replaced [Denning 1970]. Since the 1/0 time
caused by page faults is excluded in the working
set model, the working set replacement algorithm
can theoretically eliminate the thrashing caused
by chaotic memory competition. However, the
implementation of this model is very expensive
because a working set monitoring is required for
each individual process based on its virtual time
[Morris 1972].

The affordable LRU approximations of work-
ing setalgorithm, such astwo-handed clock, FIFO
with second chance, have to replace virtual time
with real time in determining the working sets.
Thisapproximation leaves aloophole for the false
LRU pages.

Load Controls

A commonly used method to protect systems
from thrashing is load control, which adjusts the
memory demands from multiple processes by
changing the multiprogramming level (MPL), or
the number of active processes in the system. It
suspends/reactivates, even swaps out/in processes
to control memory demands after the thrashing is

detected. The 4.4 BSD operating system [McKu-
sick etal. 1996], AIX system in the IBM RS/6000
[IBM 1996], HP-UX 10.0 in HP 9000 [HP 1995]
are the examples to adopt this method. Inaddition,
HP-UX system provides a " “serialize()” command
to run the processes once at a time after thrashing
is detected.

Advantages of a Lightweight
Thrashing Prevention Mechanism

The most destructive aspect of thrashing is that,
although thrashing may have been triggered by
a brief, random peak in workloads (e.g. all of the
users of asystem happen to press the Enter keys at
the same second), the system mightkeep thrashing
for an indefinitely long time. This could likely
happen in a networked system, where multiple
users coincidentally run memory-intensive pro-
gramssimultaneously without coordination onthe
usage of the memory. Because thrashing is often
a result of a sudden spike of memory demand in
the workload, a lightweight, dynamic protection
mechanism that brings only momentary change
to the system behaviors for eliminating thrashing
is more desirable than a brute-force action, such
as process suspension or even a process removal.
This is because suspension-based load control
strategy has several limitations. First, asuspension/
reactivation scheme is based on the detection of
thrashing. Before certain conditions are detected
and the suspension/reactivation actions are taken,
the system has been thrashing and its memory has
been under-utilized for a period of time. Second,
in a multiprogramming environment, a short mo-
ment of lack or availability of free memory, or
increase or decrease of page fault rates, may not
necessarily indicate that thrashing is immediately
comingor leaving. Thus, itis hard to determine the
timing of suspension/reactivation of processes in
the load control strategy, especially for programs
of very dynamically changing memory demands.
A wrong decision can significantly degrade the

89

system performance because of high costs as-
sociated with these operations. Finally, when a
process is suspended, a large portion of its entire
working set can be replaced for other processes.
Re-establishing the working set after its reactiva-
tion, particularly for a large suspended program,
could involve significant overhead. For these
reasons, in the most of today’s operating systems,
such as Solaris and Linux, only the approxima-
tion of global LRU replacement is implemented
without a built-in suspension/reactivation-based
load control mechanism.

It is noted that the ultimate solution to con-
stant and serious thrashing in a system due to
memory shortage is to increase physical memory
size, and a thrashing due to a significant memory
shortage can only be removed through swapping
out processes to reduce memory demands. The
swap token mechanism is intended to remove the
thrashing which can be considered as atemporary
and short-term pathological system condition
caused by limited memory shortage. Using the
swap token mechanism at the first place, it is
possible to eliminate system thrashing at its early
stage, minimizing the usage of load control. As a
proactive and lightweight mechanism, swap token
aims to achieve the same goal as load control
for thrashing protection, but without the limita-
tions of load control. Therefore, with the swap
token mechanism and load control guarding at
two different levels and two different stages, the
system performance will become more stable and
cost-effective.

In the remaining of the chapter, we will first
experimentally show the access behaviors of
some typical programs in Section 3. We then
show how system thrashing can be developed
when multiple of the programs run together in
Section 4. Section 5 describes the design of the
swap token mechanism, whose effectiveness is
experimentally evaluated in Section 6.

90

Swap Token

EXPERIMENTAL OBSERVATION OF
PROGRAM’S ACCESS PATTERNS

The Benchmark Programs

We have selected five memory-intensive appli-
cation programs, three of which are from SPEC
2000 (gcc, gzip, and vortex), and the other two are
programs for data reordering and matrix computa-
tion. All of these programs are both CPU-intensive
and memory-intensive, and are briefly described
as follows

* gcc: an optimized C programming lan-
guage compiler from SPEC 2000.

» gzip: adata compression utility from SPEC
2000.

» vorte: a data-oriented database program
from SPEC 2000.

* bit-reversals (bit-r): This program carries
out data reordering operations which are
required in many Fast Fourier Transform
(FFT) algorithms.

. LU decomposition (LU): This is a standard
matrix LU decomposition program for
solving linear systems.

Experimental System Setup

The machine used in the experiments is a Pentium
Il at 400 MHz with a physical memory space of
384 MBytes. The operating system is Redhat
Linux release 6.1 with the kernel 2.2.14. Program
memory space is allocated in units of 4KByte
pages. The disk is an IBM Hercules with capacity
of 8,450 MB.

When memory related activities in a program
execution occur, such as memory accesses and
page faults, the system kernel is heavily involved.
To gain insights into the memory system behav-
iors of application programs, program executions
are monitored at the kernel level by using some
lightweight instrumentation in the kernel. A user
monitor program is designed with two function-

Swap Token

alities: adjusting user memory space allocation
and collecting system data. To flexibly adjust
the available memory space for user programs
in the experiments, the monitor program requests
a memory space of certain pre-defined size, and
excludes it from the page replacement with the
help from the kernel. The remaining memory is
available for executions of application programs
in our experiments. The monitor program will not
affectthe experiment measurements, because (1) it
consumes few CPU cycles; (2) Itsresidentmemory
is excluded from the global page replacement
scope, so its memory usage has no interactions
with application programs. The monitor program
dynamically collects following memory system
statistics once in every one second for each in-
teresting process:

. Memory Allocation Demand (MAD): is the
total amount of requested memory space,
in pages, reflected in the page table of the
process. This memory allocation demand
is maintained and recorded in the kernel
data structure of task_struct.

. Resident Set Size (RSS): is the total amount
of physical memory used by the process, in
pages, and can be read from task_struct.

. Number of Page Faults (NPF): is the num-
ber of page faults of the process, and can
be read from task struct. There are two
types of page faults for each process: mi-
nor page faults and major page faults. A
minor page fault will cause an operation to
relink the requested page in memory into
the page table. The cost of a minor page
fault is negligible. A major page fault hap-
pens when the requested page is not in
the memory and has to be retrieved from
the disk. We only collect major page fault
events for each process.

. Number of Accessed Pages (NAP): is the
number of accessed pages by the process
within the last time interval of one sec-
ond. During a program execution, a system

routine is periodically called to examine
all the reference bits in the process’s page
table to get the number.

In the experiments each program is first runin
a dedicated environment to observe its memory
access behavior without occurrence of major page
faults and page replacements because the memory
demand from a single program is smaller than the
available user space.

Memory Access Behavior in
The Dedicated Environment

We use memory-time graphs to show the memory
usage of the selected programs in the dedicated
execution environment. In the graphs, the x axis
represents the execution time, and the y axis
represents the number of memory pages for three
memory usage curves: memory allocationdemand
(MAD), resident set size (RSS), and number of
accessed pages (NAP). The memory usage curves
of the five benchmark programs measured by
MAD, RSS, and NAP are presented in Figures 1
and 2. With regard to the development of memory
demands, the memory usage patterns for the pro-
grams can be classified in three types according
to the graphs:

. Quickly acquiring memory allotments:
This type of programs demands stable
memory allocations from the beginning of
program executions. When the available
space is sufficient, they can quickly ac-
quire their allotments in the early stage of
their executions. Programs bit-r and gzip
belong to this type.

. Gradually acquiring memory allot-
ments: This type of programs gradually
increases their memory allotments as their
executions proceed, and accesses their
data sets regularly in each stage until their
executions complete. When the available
space is sufficient, their RSS sizes in each

91

Swap Token

Figure 1. Memory-time graphs depicting the memory behaviors of programs, gcc, gzip, and vortex, for
their dedicated executions.

SPEC2000 goe SPEC2000 geip
45000 T 80000 . -
MAD —— MAD —
ASE —=— RSS =
provn s MAP —f-- NAP
50000
35000
. a + ool
§ H I
& [
3
£ 2000 b 7 | I5 E -
i I] & 0000 T
T 20000 l\a | M s I
! i
§ . il i
Z 15000 '} " 2 20000 7 |
" - i -
I | |
i | 1
10000
H £ - - - -
p { 3 N .
] 50 100 150 200 280] 50 100 150 200 250 300
Execubion B {second) Expcution tme {second)

SPEC2000 vortex (lendian raw)

Numiber of memory Pages

Figure 2. Memory-time graphs depicting the memory behaviors of programs, bit-r and LU, for their
dedicated executions.

bit-r 40)
T0000 T 50000 T T T T T
MAD — MAD —+
RSS = RSS —»
NAP 45000 - NAF
G000 [
40000
g 50000 ﬁ 35000
) g | |
30000 -
é‘ 40000 E t]
l |
2 g 25000 | | b
- R ¥
2 30000 £ 3 i
2 £ 20000 | |
E E #
= = |
20000 L 15000 | 1
(] b4 ®
10000 g
10000 -1
5000 1
| | anmpnnos nmmpnn Coanmnmnt S
o L i i T I . i [. i L i L
0 50 100 150 200 250 300 350 400 [20 a0 60 80 100
Execution time (second) Exacution time (second)

92

Swap Token

time interval form stair climbing curves as
their executions proceed. Program vortex
belongs to this type.

. Non-regularly changing memory allot-
ments: This type of programs has non-
regular memory demands in their life times
of executions. Their demands on memory
sizes are changed dynamically with high
variations. When the available space is suf-
ficient, there are multiple ups and downs
in the RSS curves in their executions.
Programs gcc and LU belong to this type.

MEMORY PERFORMANCE DUE TO
INTERACTIONS OF DIFFERENT
TYPES OF PROGRAMS

Performance Metrics

We use slowdown to measure the degradation
of a program performance due to its concurrent
execution, which is defined as the ratio between
the execution time of the program in a shared
environment and its execution time in adedicated
environment without major page faults. Major
sources of the slowdown are the penalty of page
faults, shared CPU cycles, processor context
switch, and monitoring activity overheads.
Among them, we found that context switch and
monitoring activity overheads are trivial in our
measurements.

Memory Performance of
Program Interactions

Recall that we have classified three types of
memory usage patterns in programs, namely,
type 1: quickly acquiring memory allotments;
type 2: gradually acquiring memory allotments;
and type 3: non-regularly changing memory
allotments. There are seven typical groups of
execution interactions between these three types
of programs: type 1 and type 2 (group 1), type
1 and type 3 (group 2), type 2 and type 3 (group

3), three types together (group 4), multiple type
1’s (group 5), multiple type 2’s (group 6), and
multiple type 3’s (group 7). To provide insights
into the LRU page replacement behaviors during
program interactions, five representative program
interaction groups are described in this chapter.
The performance results of many other program
interactions are consistent with the reported ones.
In order to clearly and concisely present effects of
the false LRU pages on the program executions,
two programs in each group are selected.

The five selected program interaction groups
includes gzip with vortex (belonging to group 1),
bit-r with gcc (belonging to group 2), vortex with
gcc (belonging to group 3), two vortex programs,
each with adifferentinput (belonging to group 6),
and two LU programs (belonging to group 7).

In the experiments, the available user memory
space was adjusted by the monitor programaccord-
ingly so that each program has considerable per-
formance degradation due to 20% to 50% memory
shortage. The shortage ratios are calculated based
on the peak memory demands during programs’
executions. In practice, the real memory shortage
ratios are smaller due to their dynamically chang-
ing memory demands, as shown in Figures 1 and
2. As the program execution reaches the shortage
range, these memory-constrained programs start
thrashing, but are not completely page-fault I/0
bound. It is the range where improvements on
page replacement algorithms can help the most.
The swap token mechanism aims at eliminating
thrashing in this situation and intends to leave
the true page-fault 1/0 bound situation to load
control.

Figure 3 presents the memory behaviors mea-
sured by MAD and RSS of programs gzip and
vortex. In the figures, both RSS curves fluctuate
during the concurrent execution, which demon-
strates the impact of the gap between memory
demands and the limited memory allocations for
each process. The gap persists for a long period of
time, eventhough the memory isenoughto satisfy
the demand for one process at a time.

93

Swap Token

Figure 3. The memory performance of gzip and vortex in their concurrent execution.

gzip (input graphic) in the interaction
B0000

MAD
RSS

50000

40000

30000 -

20000

Numiber of memory Pages

10000

"‘"*vﬁ/_\" !f/\/ fr

600 800 1000 1400

Execution time (second)

o 200 400 1200

A process gains more memory pages and in-
creases its RSS through page faults. On the other
hand, it loses pages when these pages become old.
In this way the global page replacement policy
attempts to make the memory allocated among
multiple processes to conform their respective
memory demands.

Unfortunately, what a process loses includes
false LRU pages, which are generated during its
period of faulting. The losing of these false LRU
pages does not reflect the memory demands. This

1600

vortex (lendiand.raw) in the interaction
BO0DD

MAD
RSS
50000 |
40000 |

30000

20000

Number of memory Pages

10000

1000 1200 1400

0 200 400 600
Execution time (second)

80D 1600

study shows that the proportion of false LRU pages
in all the page faults keeps increasing with the
increase of memory shortage. Consequently, the
dynamic memory allocations are hard to reflect
the memory demands of processes. For example,
gzip established its working set during the period
of time between 600" second and 760" second,
because we observed that its page fault rate is
significantly reduced. Then some of its memory
allocation was transferred to vortex, illustrated
by the lowered gzip RSS curve and increased

Figure 4. The memory performance of bit-r and gcc in their concurrent execution.

bit-r in the interaction
To000

60000

50000

40000

30000

Number of memary pages

20000

10000 |

400 600 800
Execution tme (second)

94

1000

goc (186.1) in the interaction
70000

T mAD
RSS

80000 |
S0000

40000

s
30000 | ¥ J
¥
i
20000 | ‘ |
r—

7

Number of memory pages

10000 |

—

0 200

400 600 00 1000

Execution time (second)

Swap Token

vortex RSS curve after 760" second in Figure
3. We believe the pages gzip lost are part of its
working set, because it had increased number
of page faults and tried to gain some allocation
back after then. Though vortex can take certain
memory spaces from gzip, it is unable to build
up its working set. This is because it also lost a
large number of false LRU pages when it tried to
build up its working set, which should not have
been lost considering the needs of vortex. Unfor-
tunately, we observed that the system ended up
with high page fault rates for both processes and
alow CPU utilization. We found that a process is
powerful to get additional memory allocation in
the global replacement policy when it has large
memory shortage between its RSS and its work-
ing set. However, when it gets more memory;, it
becomes less powerful, and tends to lose memory.
For this reason we see the fluctuating RSS curves
for the concurrently running programs in the
system thrashing. Our experiments show that the
executiontimes of both programsare significantly
increased due to the page faults in the concurrent
execution. The slowdown of gzip is 5.23, and is
3.85 for vortex.

Figure 4 presents the memory usage behavior
measured by MAD and RSS of concurrently run-

ning programs bit-r and gcc. Gece belongs to type
3 which has two spikes in MAD and RSS due to
its dynamic memory demands. For bit-r, its RSS
curve dropped sharply from 32,800 pages to about
16,500 pages atthe 165" second caused by the first
RSS spike of gcc at the same time. After the spike,
the RSS of gcc was decreased, which allowed bit-r
to regain its RSS. When the second RSS spike of
gcc arrived at the 365" second, the RSS of bit-r
dropped again. However, this time the RSS of
gcc began to lose its pages at about 450" second
before it could establish its working set. After that,
both programs exhibited fluctuating RSS curves.
The second spike requires only 7% more memory
demand than the first spike, which causes a much
longer execution delay. Consequently, program
gcc’s second spike of the MAD and RSS curves
were stretched to a delay of 357 seconds due to
page faults. During this period, there was a big
gap between the RSS and MAD, up to more than
20,000 pages. The experiments consistently show
that the execution times of both programs were
significantly increased due to the page faults in
the interaction. The slowdown of bit-r is 2.69,
and is 3.63 for gcc.

Figure 5 presents the memory behavior mea-
sured by MAD and RSS of concurrently running

Figure 5. The memory performance of gcc and vortex in their concurrent execution.

gec (186.0) in the interaction

MAD'
RSS

Number of memory Pages

? Ny /”" *

200 400 600 800 1000 1200 1400
Execution time (second)

-
g

]
£
£

wvortex (lendiand.raw) in the interaction

50000 WA
RSS "
45000 -

40000

35000 t
30000 - :

25000 -! i x ’
20000 - Ij

15000 :F :

10000 |
5000
0

o 200 400 600 800 1000 1200 1400
Execution time (second)

95

programs gcc and vortex. Regarding program
vortex, its RSS curve suddenly dropped to about
14,000 pages after it reached to 26,800 pages due
to its memory competition from gcc. After that,
its RSS curve entered the fluctuating stage. The
fluctuating RSS curves of vortex and the first spike
of gcc caused a large number of page faults to
both processes, which extended the first spike of
gcc by 865 seconds, and extended a RSS stair in
vortex by 563 seconds. The second spike of gcc
arrived after vortex finished its execution. Then it
ran smoothly. The experiments consistently show
that the execution times of both processes are sig-
nificantly increased due to their page faults. The
slowdown of gcc is 5.61, and is 3.37 for vortex.
Figure 6 presents the memory behavior mea-
sured by MAD and RSS of votex1 and vortex2,
two concurrently running vortex programs, each
with a different input. Although the input files are
different, theirmemory access patternsare similar.
But neither could establish its working set. The
experiments again show that the execution times
of both programs are significantly increased due
to the page faultsinthe interaction. The slowdown
for vortex1 is 3.58, and is 3.33 for vortex2.
Figure 7 presents the memory behavior mea-

Swap Token

sured by MAD and RSS of two concurrently
running programs LU. The experiments show
that frequently climbing and dropping slopes of
RSS can incur memory reallocations and trigger
fluctuating RSS curves, leading to inefficient
memory use and low CPU utilization. The dy-
namic memory demands from the program caused
the system to stay in the thrashing state for most
of their execution time. The execution times of
both processes are significantly increased due to
the page faults. The slowdowns for the two LU
processes are 3.57 and 3.40, respectively.

Development of Thrashing

The experiments have shown that thrashings can
be triggered with a moderate amount of memory
shortage and can cause significant performance
degradations. False LRU pages play their role
in the process -- they make global replacement
policies blind to a program’s true memory needs,
and a portion of the working set identified as the
false LRU pages mistakenly replaced. Here are
certain conditions that probably cause thrashings
based on the experimental studies.

Figure 6. The memory performance of two vortex programs (vortex1 and vortex2), each with a different

input, in their concurrent execution.

wortex (lendiant.raw} in the interaction
40000

MAD
RSS —

30000 —
25000
M

20000

Numiber of memany Pages

600 BOO 1000 1200

Execution time (second)

200 400

96

Number of memory Pages

vortex {lendian3 raw] in the interaction
40000

MAD
RSS "

30000

25000 +

20000 +

10000 +

5000

1400

600
Execution time (second)

800

Swap Token

LU-1 in the interaction

Number of memory pages

50 100 150 200 250 300 350
Execution tme (second)

When the memory demand of a process
has a sudden jump for additional memory
allocation, its RSS can be easily increased
accordingly at the beginning because ad-
dition of new pages do not need I/O op-
erations to access data on the disk (zero-
filled pages instead of disk-read pages).
If the process cannot establish its work-
ing set before many false LRU pages are
produced, the number of lost pages on the
false LRU condition can exceed the num-
ber of obtained pages through page fault-
ing, causing its RSS to drop. In addition,
the increased memory demand of this pro-
cess causes other processes in the system
to generate more false LRU pages. In this
way thrashing is triggered. The examples
of this condition include: the starting ex-
ecution stage of gzip in the left figure of
Figure 3, the second spike of gcc in the
bit-r / gcc interaction in Figure 4, the first
spike of gcc in the gcc / vortex interaction
in Figure 5, and all the RSS jumps of both
LU processes in Figure 7.

If memory access patterns of concurrently
running programs, in terms of working set
size, memory usage behavior, and access

Number of memory Pages

Figure 7. The memory performance of two LU programs in their concurrent execution.

LU-2 in the interaction

50000 T
MAD
RSS "
45000 |

40000 [ge——— s . —

el -

-
-~

®
2

=]
2

-]
2

=]
2

=
2

o 50 100 150 200 250 300 350 400
Execution time (second)

frequency, are similar, false LRU pages
can be easily generated for both processes,
which can trigger the system thrashing. The
interactions between two vortex processes
in Figure 6 and between two LU processes
in Figure 7 are examples of this condition.
* When the available memory space is sig-
nificantly less than the aggregate memory
demand of the processes, all the processes
compete for the limited memory alloca-
tions. A small number of page faults may
trigger a large number of false LRU pages.
This condition will be shown in Figure 8
before the token is taken by a process.

DESIGN AND IMPLEMENTATIONS
OF SWAP TOKEN

We choose the Linux OS as a base to evaluate the
design and implementation of swap token. The
swap token has been implemented in Linux Ker-
nel 2.2 by Song Jiang and in Linux kernel 2.6 by
Rik van Riel. As a more thorough evaluation has
been conducted for the implementation in Kernel
2.2, the discussions on the topic in the chapter are
based on this implementation.

97

The LRU Page Replacement in Linux

An approximate LRU algorithm is adopted in
the Linux kernels as its global page replacement
policy. When a page fault occurs, kernel func-
tion do_page_fault() will be called to handle it.
If the page fault is caused by a legal access to a
page missed in memory but stored in the swap
file on disk, the kernel will try to get a free page
in memory and load the requested page from the
swap file by kernel function do_swap_page().
If there are no free memory pages available, the
kernel will make a room for the page by selecting
a victim page from the memory for replacement.
If the replaced page is dirty, it has to be written
back first to the swap file, which also contributes
to the number of major page faults (NPF).

To select victim pages, kernel function
get_free_pages() is invoked by the swap daemon
kswapd, which is waken up whenthe free physical
memory space is below athreshold or whenapage
faulted program cannot find a page from the free
page pool. The function will look into the process
space of each eligible process in the system to see
if it is a candidate from which memory pages can
be found for swapping. It always starts from the
processwith the largest resident pages. The kernel
will then check through all of the virtual memory
pages in the page table of the selected process.
Generally, once the kernel finds that the reference
bit of a page table entry is turned off (indicating
that the page has not been accessed since it was
reset last time by the function), the kernel will
select the page for replacement. If the bit is on,
the kernel will turn it off, and keep checking the
next page in the table. If no pages can be replaced
from this process, the next candidate process will
betried. Thisimplementation effectively emulates
the behavior of the LRU replacement algorithm
with a small overhead. However it also generates
false LRU pages during concurrent execution of
programs as we have discussed.

Most operating systems have protection
mechanismsto resolve serious thrashing problems.

98

Swap Token

For example, a process will be killed in Linux to
release its memory space when the process keeps
being denied its requested pages. Aprocesswill be
swapped out for the same purpose in the 4.4 BSD
operating system. If the free page pool cannot be
filled in a timely manner, the system will start to
swap out or remove processes.

Unfortunately, the existence of false LRU
pages makes kernel function __get_free_pages()
in Linux (and the pageout daemon in 4.4 BSD)
easily and quickly find “qualified” pages, includ-
ing many false LRU pages, to fill the free page
pool. As the result, the system can be involved
in a “pre-thrashing” state for a significantly long
period of time before the kernel is awakened to
swap out or remove processes. The CPU utiliza-
tion in the pre-thrashing state can be extremely
low due to the large number of page faults. The
system developers of the 4.4 BSD operating sys-
tem points out that the system performance can
be much better when the memory scheduling is
done by page replacement operations than when
the process swapping is used [McKusick et al.
1996]. The swap token mechanism is a page-
replacement-oriented memory scheduling scheme
to address the thrashing issue before the system
has to swap out or remove processes.

The Implementation of the
Swap Token in Linux

The basic idea of the swap token mechanism is to
keep false LRU pages from spreading over all the
concurrently running processes, and to make the
working setof at least one process be identified and
established. Atoken is a newly introduced global
and mutually exclusive variable in the kernel,
which has two states, indicating either the token
is available or the token has been taken by a page
faulted process. The token is initialized when the
systemisbooted. Inthe implementation, aprocess
requests the token right before it invokes func-
tion do_swap_page(), which is called right after
a page fault occurs and before the page is loaded

Swap Token

from the swap file. This arrangement makes sure
that the token only goes to the process in need of
memory. The token is only taken by a process
when page faults occur due to memory shortage.
In other words, a process will not compete for the
token until the memory space is insufficient for
it. The system functions exactly as the original
Linux system when memory space is sufficient
for processes. Inthe implementation, a new status,
called swapping_status, is introduced for each
process to indicate whether the process is in the
stage of swapping in/out pages.

As we have explained, false LRU pages are
generated for a process in its page swapping
period. The process does not access its allocated
memory because it does not have a chance to do
so due to swapping.

Therefore, these pages should be prevented
from swapping out. With the swap token mecha-
nism, a process holding the token can prevent
its false LRU pages from being replaced. In the
process of searching for and marking LRU pages
(by turning off their reference bits) for page re-
placement, kernel function _ get free pages()
skips the process that holds the token and is in the
swapping status. In this way the memory pages
of the process with the token are protected when
and only when it has unsolved page faults, and
false LRU pages are eliminated from it.

The LRU pagesofaprocessidentified duringa
normal computing phase are the true LRU pages,
which are the replacement candidates targeted
by the swap token mechanism. To this end, the
privilege for the process holding the token is
removed as soon as the process resolves its page
faults by turning off its swapping status, which
allows __get free_pages() to include the process
in its search for LRU pages for replacement. In
our implementation, there isan exception handler.
When the privileged process cannot find LRU
pages from other processes for replacement, the
system will have to select LRU pages for the
process from its own resident space.

The swap token mechanism is highly light-

weight. Its only additional operations are to set
the token/swapping status, and to decide whether
the process holding the token should be skipped or
not when the system is searching for LRU pages
for replacement. Thus, the implementation incurs
very little overhead.

Fairness Issue in Memory Usage

If a process has fully established its working
set, and it is able to regularly access it, there is a
good chance for the process to keep its allocated
memory space even with the competition from
other processes through their page faults, because
it would generate few false LRU pages when the
process establishes its working setand hasa small
number of page faults. Therefore, this process
can be expected to efficiently finish its execu-
tion and then release its space to other processes,
which allows multiple processes to finish their
executions one by one with a high CPU utiliza-
tion even with a considerable memory shortage.
Most operating systems make efforts to keep
the system away from thrashing and stay in this
situation until load controls have to be applied.
As a lightweight, proactive thrashing protection
mechanism, swap token allows a process to keep
the token for the rest of its lifetime once it receives
it. When a program exits its execution, the token
will be returned for public use.

The fairness issue of memory usage among
processes in thrashing is usually addressed in the
load control policies, rather than explicitly consid-
ered in the global page replacement policies. For
example, the 4.4 BSD operating system initially
suspends a process after thrashing. If the thrash-
ing continues, additional processes are suspended
until enough memory space becomesavailable. In
order to address the issue of fairness, even if there
is not enough memory, the suspended processes
are allowed to reactivate its execution after about
20 seconds. If the thrashing condition returns,
other processes will be selected for suspension to
free memory space. Asa mechanism to overcome

99

the limitations of the global LRU replacement
implementation, the fairness issue remains to be
addressed in the load control policies.

A Close Look at the Effect
of Swap Token

To show how a swap token functions and its ef-
fectiveness, let us take a close look at its running
behavior during program interactions. The follow-
ing program segment is used in the experiment:

#define LOOP 1000
#define SIZE (53*1024*1024/
sizeof(double));

double * mem_page;
int size= SIZE;

mem_page = (double *)calloc(SIZE,
sizeof(double));
for (i = 0; 1 < LOOP; i++){
for (= 0; jJ < SIZE; j += step){
mem_page[J1 = mem_page[j] + 1;
Other computing work only on mem_
pagel[il;
}
if ((i+1)%10 == 0)
SIZE = (long)(0.9*SIZE);
}

This program uses 1000 loop iterations to ac-
cessalargearray. Atfirst the program sequentially
accessesitsentire dataarray for tentimes. Then for
eachof its nextten iterations, the programreduces
its accessing range over the array by removing
10% of all its accesses at the end of the array. The
available user memory space was adjusted to 60
MB. The access pattern produces a large number
of page faults when there is a memory shortage.
In this experiment, we will demonstrate how the
token works to address the serious performance
degradation by reducing false LRU pages in
program interaction environment.

100

Swap Token

We let two instances of the program run si-
multaneously, allocating a 53 MB array for one
process (referred as small process hereafter) and
a 58 MB array for another process (referred as
large process hereafter) by adjusting variable size
in the program. Closely tracing the page access
behaviors of each process before and after the
token was set in the system, we present the impact
of the token to each of the interacting programs.
Figure 8 presents space-time graphs for the small
process (left graph) and the large process (right
graph) during their interaction, where y-axis
represents three types of memory pages at dif-
ferent virtual addresses: recently visited pages
(or the pages that have been accessed in the last
one-second time window}, swapped-out pages,
and resident but not recently visited pages, and
the x-axis represents the execution time sequence.
The RSSsize of each process can be approximated
by the sum of the number of “visited pages” and
the number of “resident but not visited pages” at
any execution point.

We have observed that each of the processes
expanded its RSS through page faulting and
meanwhile lost some of its pages under the false
LRU condition. The combination of these two
activities causes three effects: (1) neither process
could establish its working set; (2) the RSS size
of each process fluctuated; and (3) little useful
work could be done.

The token was set in the system and taken by
the small process (left graph in Figure 8) at the
execution time of 125" second. After this time,
this process successfully kept its useful memory
pages and avoided false LRU pages, whose ef-
fect is reflected in the increased lightly gray area
for “resident but not visited pages”. During the
same period of time, the large process reduced its
number of “resident but not visited pages”. Once
the small process established its working set, all its
obtained pages were frequently visited. The token
only avoids swapping out the false LRU pages,
but still treats the true LRU pages as replacement
candidates. This can be confirmed by observing

Swap Token

Figure 8. The memory behaviors of the process which accesses an array of 53 MB and takes the token
in the middle of its execution (left figure) and the other process which accesses an array of 58 MB and
does not own the token (right figure) during their execution interaction.

A snapshat for the program taking the loken during execution
280000 T T T

T vistod pages «
swapped-oul Eages
278000 resident but not visided pages

the phase when the small process started reducing
its working set. Although the process still held the
token, its true LRU pages were migrated to the
large process so that the large one can use these
released pages. The right graph in Figure7 shows
thatthe large processdid increase its RSS size from
this time. Then the large process quickly finished
its execution after the small process holding the
token left the system.

It is interesting to see that the token was also
beneficial to the process that did not own the token.
The right graph in Figure 8 shows that the large
process without the token took about 50 seconds
to finish one pass of access to the array before
the token was set in the system. After the token
was taken by the small process, the one pass ac-
cess time of the large process was reduced to less
than 25 seconds, although its RSS was reduced.
The reason for this is as follows. Since the 1/0
bandwidth of the disk became a bottleneck when
a system conducted a large number of page faults
for both processes, the page fault penalty increased
accordingly. When one process got the token, its
number of page faults was significantly reduced,
and it consumed much less I/0 bandwidth. Thus,

A snapshol for the program without taking token
T T

TR e

swiapped-oul page:
278000 resadant but not visitod pagos:

the page fault penalty of the process without the
token was also greatly reduced, and more useful
work can be done even though its number of page
faults may be increased.

PERFORMANCE OF THE
SWAP TOKEN MECHANISM

The performance of swap token is experimentally
evaluated using the five selected groups of the
interacting programs. Each of the experiments
has the exactly same condition as its counterpart
conducted in Section 4.2, except that swap token
is introduced in the experiments.

Figure 9 presents the memory performance
measured by MAD and RSS of concurrently
running programs gzip and vortex when the swap
token is introduced. At the execution time of 250"
second, both programs started page faults duetoa
memory shortage. The token was taken by vortex
after then. Figure 8 shows that the once seriously
fluctuating RSS curves of vortex observed in the
original systemin Figure 3 disappeared. Although
the RSS curve of vortex does not exhibit the be-

101

Swap Token

Figure 9. The memory performance of gzip and vortex in their concurrent execution managed with

swap token.

gzip (input grapgic) in the interaction

50000

© MAD
RSS

Numiber of memaory Pages
Number of memory Pages

200 400 600 BOO
Execution time (second)

haviorasitisshown inthe dedicated environment,
where its RSS curve was almost overlapped with
its MAD curve (see Figures 1 and 2), we believe
this RSS curve represents its real memory de-
mands for its effective execution (or its working
set size). There are two reasons for this: (1) The
page fault rate is significantly lower than that in
its counterpartexperiment for the original system.
Even when RSS curve of vortex is considerably
lower than its MAD curve after the 470" second,
its page fault rates are lowered by at least 70%
compared with those measured at the same ex-
ecution stage in the original system. (2) The RSS
curve of vortex is consistent with its NAP curve in
the dedicated environment. The NAP curve was
increased much slowly than MAD curve, which
reflects that the recently accessed memory size
did not increase as MAD did. Therefore, the gap
between its RSS and MAD curves in Figure 9
was enlarged in its late execution stage, where its
fluctuation was caused by the content change of
its working set. While eliminating the thrashing
quickly, the swap token distinguished true and
false LRU pages, and only kept the working set
of the protected process in the memory, rather
than simply pinned all of its pages in memory.

102

vortex (lendiand.raw) in the interaction
50000

MaD
RSS "

50000

40000

30000

20000

10000

400 600
Execution time (second)

800 1000

The experiments also show that the execution
times of both programs are significantly reduced
by the swap token compared with the times in the
original Linux. The slowdown of gzip is 2.63 (a
reduction 0f50%), and is 1.83 for vortex (areduc-
tion of 52%). The page fault reductions for gzip
and vortex are 45% and 80%, respectively.
Figure 10 presents the memory performance
measured by MAD and RSS of concurrently
running programs bit-r and gcc when the swap
tokenisintroduced. At the execution time of 146"
second, the first RSS spike of gcc caused many
page faults for both processes due to memory
shortage. The token was taken by gcc after this
moment. Figure 10 shows that gcc quickly built
up its working set, reflected by keeping its first
RSS spike with a short delay after taking the
token, while bit-r sharply decreased its RSS
during this short period of time. Process gcc
established its working set in its second spike
more quickly than it did in its first spike, due to
the difference between their reference behaviors:
gcc accessed its working set more frequently in
the second spike than it did in the first spike.
The swap token mechanism attempted to reduce
false LRU pages without affecting the ability of

Swap Token

Figure 10. The memory performance of bit-r and gcc in their concurrent execution managed with swap

bit-r in the interaction
T0O000 .
MAD
60000 |-
50000
2
3
o
z
§ 40000
g
| ——— 3
B 30000 - 3 ¥ : ¥
: : t
- ' x ¥
20000 F R
10000 -

300 400 500
Execution tme (second)

global LRU to reflect memory access patterns of
processes. The measurements show that the ex-
ecution times of both programs are significantly
reduced by the swap token compared with the
times in the original Linux LRU. The slowdown
of bit-r is 2.08 (a reduction 0f 23%), and is 2.25
for gcc (a reduction of 38%). The page fault
reductions for bit-r and gcc are 20% and 82%,
respectively.

Number of memary pages

goc (166.1) in the interaction
70000

MAD
RSS "

80000 |

S0000

40000

300 400
Execution time (second)

500

Figure 11 presents the memory performance
measured by MAD and RSS of concurrently
running programs gcc and vortex when the swap
token is introduced. At the execution time of 397"
second, both processes started page faults due to
memory shortage. The token was taken by gcc
after this time.

Figure 11 shows that gcc quickly built up its
working set, reflected by keeping the first RSS

Figure 11. The memory performance of gcc and vortex in their concurrent execution managed with

swap token.
gee (166.1) in the interaction
50000 .
MAD
RSS "
45000
40000
-
« 35000 F -
i ——
E 30000 | f‘
§ 25000 | &
s ¥
& 20000
5
= 15000 | »
= '
10000 o™ !
5000 | .
o A R : . .
o 100 200 300 400 500 600

Execution time (second)

700

Numibér of memory Pages

wortex (lendiand.raw) in the interacton

50000

45000 -

40000

35000 -

30000

25000

20000

15000 ¢

10000

5000

200 300 400 500 600 700

Execution time {second)

103

Swap Token

Figure 12. The memory performance of two vortex programs (vortex1 and vortex2), each with a different
input, in their concurrent execution managed with swap token.

wvartex (lendiant raw) in the interaction

MAD
RSS "

Number of memary pages
»o
s

100 200 300 400 500 600 700 800
Execution time (second)

spike narrow after taking the token, while gzip
sharply reduced its RSS during this short period
of time. Vortex finished its execution before the
second RSS spike of gcc arrived. Process gcc
finished its execution without major page faults
after another 42 seconds. The execution times
of both processes are significantly reduced by
the swap token compared with the ones with the
original Linux LRU. The slowdown of gccis 1.85
(a reduction of 67%), and is 1.54 for vortex (a
reduction of 54%). The page fault reductions for
gcc and vortex are 95% and 79%, respectively.
Figure 12 presents the memory performance
measured by MAD and RSS of two concurrent
running programs vortex1 and vortex2 when the
swap token is applied. At the execution time of
433" second, both processes started page faults
due to memory shortage. The token was taken by
vortex1 after this moment. Figure 11 shows that
the process then quickly built up its working set,
reflected by its climbing RSS curve after the token
was taken, while vortex2 continuously fluctuated
its RSS during this period of time. Vortex1 with
the token smoothly finished the executionand left
the system at the execution time of 668" second.
Vortex2 then immediately obtained the needed

104

Number of memory Pages

wvortex (lendiand.raw) in the interaction
40000

35000

30000

25000

20000

15000

10000

Execution time (second)

memory space, reflected by the sharp increase
of its RSS, and finished its execution without
major page faults after another 161 seconds. The
executiontimes of both programsare significantly
reduced by the swap token compared with the
ones in the original Linux LRU. The slowdown
of vortexl is 1.95 (a reduction of 46%), and is
2.08 for vortex2 (a reduction of 38%). The page
fault reductions for vortex1 and vortex2 are 93%
and 63%, respectively.

Figure 13 presents the memory performance
measured by MAD and RSS of two concurrently
running programs LU1 and LU2 when the swap
token is introduced. In the first spikes of both
LU1 and LU2 processes after a few seconds of
executions, both processes started page faults due
to memory shortage.

The tokenwas taken by LU1 after thismoment.
Figure 12 shows that LU1 quickly built up its
working set, reflected by keeping its RSS curve
very similar to its RSS curve in the dedicated
environment after taking the token, while LU2
could only obtain a moderate amount of RSS
during this period of time. Process LU1 with the
token ran smoothly. In the last 25 seconds of the
execution of LUL, its RSS curve was lowered

Swap Token

Figure 13. The memory performance of two LU programs (LU1 and LU2), each with a different input,
in their concurrent execution managed with swap token.

LU-1 in the interaction

"MaD
RSS —

Number of memory pages
a
s

50 100 150 200 250
Execution time (second)

while the RSS curve of LU2 accordingly rose by
obtaining true LRU pages from LUL. The mea-
surements show that the execution times of both
processes are significantly reduced by the swap
token compared with the onesinthe original Linux
LRU. The slowdown of LU1 is 2.57 (a reduc-
tion of 28%), and is 2.99 for LU2 (a reduction
of 12%). The page fault reductions for LU1 and
LUZ2 are 87% and -116%, respectively. It is noted
that the execution time of LU2 was still reduced,
though its number of page faults was significantly
increased. This is because the page fault penalty
was reduced with more available 1/0 bandwidth
after the token was taken by LUL.

CONCLUDING REMARKS

Management of memory hierarchies has been an
intensive study for several decades. Regarding
the large gap in access time between memory and
disk, a lot of work has been done to reduce the
number of page faults for each program. Research
on page replacementalgorithms have been a clas-
sical topic since 1960s and many improvements
over the LRU page replacement policy have been

Number of memory Pages

LU-2 in the interaction
50000

MAD
RSS "
45000 +

40000 | —_— - - - | —

2

=1
=1
=

S

_. x . Fox 5 &
25000 1 e’ it AR S ool e

-]
2

=]
2

=
2

‘_.
2

o 50 100 150 200 250 300
Execution time (second)

recently proposed, including 2Q, LIRS, and ARC.
However, in a multiprogramming environment,
the interactions between concurrently running
programs can have a large impact on memory
usage pattern. Specifically, an uncoordinated use
of memory among the processes can lead to the
system thrashingwhen their aggregate memory de-
mand considerately exceeds physical memory.

In the chapter, we have investigated sources
of memory performance degradation in program
interactions by carefully examining the LRU
memory page replacement and its representative
implementations in Linux systems. We have exper-
imentally demonstrated that the false LRU pages
can be aserious loophole inthe LRU replacement
implementations because these implementations
donotcorrectly reflectand predict memory access
patterns of interacting programs.

Inorder toovercomethe limitationsinthe LRU
replacement in program interactions, the swap
token mechanism is designed and implemented
in the memory management system of the Linux
kernel. Rather than pinning all pages of a token-
holding process in memory, the swap token only
protects its true LRU pages from swapping to
establish an orderly page replacement, and allows

105

its false LRU pages to be selected for replace-
ment no matter whether a process possesses the
token. In this way we can avoid the drawbacks of
existing brute-force thrashing mechanisms. The
experiments show that the swap token mechanism
can consistently and significantly reduce the
page faults and the execution times of memory-
demanding programs in a multiprogramming
environment. As the swap token mechanism is
not designed specifically for specific operating
systems, its implementation can be also applied
to other operating systems.

REFERENCES

Alderson, A., Lynch, W. C., & Randell, B. (1972).
Thrashing in a Multiprogrammed System. Oper-
ating Systems Techniques. London: Academic
Press.

Coffman, E.G.Jr,&Ryan, T.A. (1972). AStudy of
Storage Partitioning Using a Mathematical Model
of Locality. Communications of the ACM, 15(3),
185-190. d0i:10.1145/361268.361280

Corporation, H. P. (1995). HP-UX 10.0. Memory
Management White Paper.

IBM Corporation (1996). AIX Versions 3.2 and 4
Performance Tuning Guide.

106

Swap Token

Denning, P.J. (1968a). The Working Set Model for
Program Behavior. Communications of the ACM,
11(5), 323-333. d0i:10.1145/363095.363141

Denning, P. J. (1968b). Thrashing: Its Causes and
Prevention. In Proceedings of AFIPS Conference,
(pp. 915-922).

Denning, P. J. (1970). Virtual Memo-
ry. Computer Survey, 2(3), 153-189.
doi:10.1145/356571.356573

Kenah, L. J., & Bate, S. F. (1984). VAX/VMS
Internals and Data Structures. Digital Press.

Lazowska, E. D., & Kelsey, J. M. (1978). Notes
on Tuning VAX/VMS. Technical Report 78-12-01.
Dept. of Computer Science, Univ. of Washing-
ton.

McKusick, M. K., Bostic, K., Karels, M. J., &
Quarterman, J. S. (1996). The Design and Imple-
mentation of the 4.4 BSD Operating System.
Reading, MA: Addison Wesley.

Morris, J. B. (1972). Demand Paging through
Utilization of Working Sets on the MANIAC II.
Communications of the ACM, 15(10), 867-872.
doi:10.1145/355604.361592

107

Chapter 6

Application of both Temporal
and Spatial Localities
in the Management of
Kernel Buffer Cache

Song Jiang
Wayne State University, USA

ABSTRACT

As the hard disk remains as the mainstream on-line storage device, it continues to be the performance
bottleneck of data-intensive applications. One of existing most effective solutions to ameliorate the bottle-
neck is to use the buffer cache in the OS kernel to achieve two objectives: reduction of direct access of
on-disk data and improvement of disk performance. These two objectives can be achieved by applying
both temporal locality and spatial locality in the management of the buffer cache. Traditionally only
temporal locality is exploited for the purpose, and spatial locality, which refers to the on-disk sequen-
tiality of requested blocks, is largely ignored. As the throughput of access of sequentially-placed disk
blocks can be an order of magnitude higher than that of access to randomly-placed blocks, the missing
of spatial locality in the buffer management can cause the performance of applications without dominant
sequential accesses to be seriously degraded. In the chapter, we introduce a state-of-the-art technique
that seamlessly combines these two locality properties embedded in the data access patterns into the
management of the kernel buffer cache management. After elaboration on why the spatial locality is
needed in addition to the temporal locality, we detail a framework, DULO (DUal LOcality), in which
these two properties are taken account of simultaneously. A prototype implementation of DULO in the
Linux kernel as well as some experiment results are presented, showing that DULO can significantly
increases disk I/O throughput for real-world applications such as Web server, TPC benchmark, file system
benchmark, and scientific programs. It reduces their execution times by as much as 53%. We conclude
the chapter by identifying and encouraging a new direction for research and practice on the improve-
ment of disk /O performance, which is to expose more disk-specific data layout and access patterns to
the upper-level system software for disk-oriented policies.

DOI: 10.4018/978-1-60566-850-5.ch006

Copyright © 2010, I1GI Global. Copying or distributing in print or electronic forms without written permission of 1GI Global is prohibited.

Application of both Temporal and Spatial Localities in the Management of Kernel Buffer Cache

INTRODUCTION

The hard drive is the most commonly used sec-
ondary storage device supporting file accesses
and virtual memory paging. While its capacity
growth pleasantly matches the rapidly increas-
ing data storage demand, its electromechanical
nature causes its performance improvements to
lag painfully far behind processor speed progress.
It is apparent that the disk bottleneck effect is
worsening inmodern computer systems, while the
role of the hard disk as dominant storage device
will not change in the foreseeable future, and the
amount of disk data requested by applications
continues to increase.

The performance of adisk is constrained by its
mechanical operations, including disk platter rota-
tion (spinning) and disk arm movement (seeking).
A disk head has to be on the right track through
seeking and on the right sector through spinning
for reading/writing its desired data. Between the
two moving parts of a disk drive affecting its
performance, the disk arm is its Achilles’ Heel.
This is because an actuator has to move the arm
accurately to the desired track through a series
of actions including acceleration, coast, decel-
eration, and settle. As an example, for a typical
high performance drive of 10,000 RPM, average
seek time is 6.5 milliseconds, while its average
rotation time is 3 milliseconds. Thus, accessing
of a stream of sequential blocks on the same track
achieves a much higher disk throughput than that
accessing of several random blocks does.

In the current practice, there are several major
effortsinparallel to break the disk bottleneck. One
effort is to reduce disk accesses through memory
caching. By using replacement algorithms to ex-
ploitthe temporal locality of data accesses, where
data are likely to be re-accessed in the near future
after they are accessed, requests for on-disk data
can be satisfied without actually being passed to
disk. To minimize disk activities in the number
of requested blocks, all current replacement al-
gorithms are designed by choosing block miss

108

reduction as the sole objective. However, this can
be a misleading metric that may not accurately
reflect real system performance. For example,
requesting ten sequential disk blocks can be com-
pleted much faster than requesting three random
disk blocks, where disk seeking is involved. To
improve real system performance, spatial local-
ity, a factor that can make a difference as large
as an order of magnitude in disk performance,
must be considered. However, spatial locality
is unfortunately ignored in current buffer cache
managements. In the discussion of this chapter,
spatial locality specifically refers to the sequen-
tiality of the disk placements of the continuously
requested blocks.

Another effort to break the disk bottleneck
is reducing disk arm seeks through 1/0O request
scheduling. 1/0 scheduler reorders pending re-
quests in a block device’s request queue into a
dispatching order that results in minimal seeks
and thereafter maximal global disk throughput.
Example schedulersinclude Shortest-Seek-Time-
First (SSTF), C-SCAN, as well as the Deadline
and Anticipatory I/O schedulers (lyer etal. 2001)
adopted in the current Linux kernels.

The third effort is prefetching. A prefetching
manager predicts future request patterns associated
with a file opened by a process. If a sequential
access pattern is detected, then the prefetching
manager issues requests for the blocks following
the current on-demand block on behalf of the
process. Because a file is usually contiguously
allocated on disk, these prefetching requests can
be fulfilled quickly with few disk seeks.

While 1/0 scheduling and prefetching can
effectively exploit spatial locality and dramati-
cally improve disk throughput for workloads
with dominant sequential accesses, their ability
to deal with workloads mixed with sequential
and random data accesses, such as those in Web
services, databases, and scientific computing ap-
plications, is very limited. This is because these
two strategies are positioned at a level lower than
the buffer cache. While the buffer cache receives

Application of both Temporal and Spatial Localities in the Management of Kernel Buffer Cache

1/Orequests directly fromapplicationsand has the
power to shape the requests into a desirable 1/0
request stream, 1/0 scheduling and prefetching
only work on the request stream passed on from
the buffer cache and have very limited ability to
re-catch the opportunities lost in the buffer cache
management. Hence, in the worst case, a stream
filled with randomaccesses makes I/0 scheduling
and prefetching largely ineffective, because no
spatial locality is left for them to exploit.

Concerned with the lack of ability to exploit
spatial locality in buffer cache management, the
solution to the deteriorating disk bottleneck is a
new buffer cache management scheme that ex-
ploits both temporal and spatial localities, which
is named as Dual LOcality scheme (DULO).
DULO introduces dual locality into the caching
component in an operating systems by tracking
and utilizing disk placements of in-memory pages
in its buffer cache management. The objective is
to maximize the sequentiality of I/O requests that
are serviced by disks. For this purpose, DULO
gives preference to random blocks for staying in
the cache, while sequential blocks that have their
temporal locality comparable to those random
blocks are replaced first. With the filtering effect
of the cache on 1/0 requests, DULO influences
the 1/0O requests made by applications so that more
sequential block requests and less random block
requests are passed to the disk thereafter. The disk
is then able to process the requests with stronger
spatial locality more efficiently.

CHALLENGES WITH
DUAL LOCALITY

Application of dual locality in the cache man-
agement raises challenges that do not exist in a
traditional system. In the current cache manage-
ments, replacement algorithms only consider
temporal locality (a position inaqueue in the case
of LRU) to make a replacement decision. While
introduction of spatial locality necessarily has to

compromise the weight of temporal locality in a
replacement decision, the role of temporal local-
ity must be appropriately retained in the decision.
For example, we may give randomly accessed
blocks more privilege of staying in cache due to
their weak spatial locality (weak sequentiality),
even though they have weak temporal locality
(large recency). However, we certainly cannot
keep them in cache forever if they do not have
sufficientre-accesses that indicate temporal local-
ity. Otherwise, they would pollute the cache with
inactive data and reduce the effective cache size.
The same consideration also applies to the block
sequences of different sizes. We prefer to keep a
short sequence because it only hasasmall number
of blocks to amortize the cost of an 1/O operation.
However, how do we make areplacement decision
when we encounter a not-recently-accessed short
sequence and arecently-accessed long sequence?
The challenge is essentially how to make the
tradeoff between temporal locality (recency) and
spatial locality (sequence size) with the goal of
maximizing disk performance.

THE DULO SCHEME

We now present the DULO scheme to exploitboth
temporal locality and spatial locality simultane-
ously and seamlessly. Because Least Recently
Used (LRU) or its variants are the most widely
used replacement algorithms, the DULO scheme
is designed by using the LRU algorithm and its
data structure --- the LRU stack, as a reference
point.

In LRU, newly fetched blocks enter into its
stack top and replaced blocks leave from its
stack bottom. There are two key operations in
the DULO scheme: (1) Forming sequences. A
sequence is defined as a number of blocks whose
disk locations are close to each other and have been
accessed sequentially inaseries without interrup-
tion during a limited time period. Additionally, a
sequence is required to be stable so that blocks in

109

Application of both Temporal and Spatial Localities in the Management of Kernel Buffer Cache

Figure 1. The LRU stack is structured for the
DULO replacement algorithm

Correlation Buffer
Staging Section

Sequencing Bank u
- !

Eviction Section

LRU Stack

it would be fetched together next time when they
are read from disk. Specifically, a random block
is a sequence of size 1. (2) Sorting the sequences
in the LRU stack according to their recency
(temporal locality) and size (spatial locality), with
the objective that sequences of large recency and
size are placed close to the LRU stack bottom.
Because the recency of a sequence changes while
new sequences are being added, the order of the
sorted sequence should be adjusted dynamically
to reflect the change.

Structuring LRU Stack

To facilitate the operations presented above,
DULO partitions the LRU stack into two sec-
tions (shown in Figure 1 as a vertically placed
queue). The top part is called staging section
used for admitting newly fetched blocks, and the
bottom part is called eviction section used for
storing sorted sequences to be evicted in their
orders. The staging section is again partitioned
into two segments. The first segment is called
correlation buffer, and the second segment is
called sequencing bank. Its role is to filter high
frequency references and to keep them from
entering the sequencing bank, so as to reduce the
consequential operational cost. The sequencing

110

bank is used to prepare a collection of blocks
to be sequenced, and its size ranges from 0 to a
maximum value, BANK_MAX.

Suppose in the beginning the staging section
of an LRU stack consists of only the correlation
buffer (the size of the sequencing bank is 0), and
the eviction section holds the rest of the stack.
When a block leaves the eviction section and a
block enters the correlation buffer at its top, the
bottom block of the correlation buffer enters the
sequencing bank. When there are BANK MAX
blocks leaving the eviction section, the size of
sequencing bank is BANK MAX. We refill the
eviction section by taking the blocks in the bank,
forming sequences out of them, and inserting
them into the eviction section in a desired order.
There are three reasons for us to maintain two
interacting sections and use the bank to conduct
sequence forming: (1) The newly admitted blocks
have a buffering area to be accumulated for
forming potential sequences. (2) The sequences
formed at the same time must share a common
recency, because their constituent blocks are from
the same block pool --- the sequencing bank in
the staging section. By restricting the bank size,
we make sure that the block recency will not be
excessively compromised for the sake of spatial
locality. (3) The blocks that are leaving the stack
are sorted in the eviction section for a replace-
ment order reflecting both their sequentiality and
their recency.

Block Table: A Data Structure
For Dual Locality

To complement the missing spatial locality in
traditional caching systems, we introduce a data
structure in the OS kernel called block table. The
block table is analogous in structure to the multi-
level page table used for process address transla-
tion. However there are clear differences between
them because they serve different purposes: (1)
The page table covers virtual address space of a
process in the unit of page and page address is an

Application of both Temporal and Spatial Localities in the Management of Kernel Buffer Cache

index into the table, while the block table covers
disk space in the unit of block, and block disk
location is an index into the table. (2) The page
table is used to translate a virtual address into its
physical address, while the block table is used to
provide the times of recent accesses for a given
disk block. (3) The requirement on the page table
lookup efficiency is much more demanding and
performance-critical than that on the block table
lookup efficiency because the former supports
instruction execution while the latter facilitates
1/0 operations. That is the reason why a hardware
TLB has to be used to expedite page table lookup,
but there is no such a need for block table. (4)
Each process owns a page table, while each disk
drive owns a block table in memory.

In the system we set a global variable called
disk access clock, which ticks each time a block
is fetched into memory. The block being fetched
takes the current clock time. We then record the
timestamp in an entry at the leaf level of the block
table corresponding to the block disk location,
which we called BTE (Block Table Entry). When
the block is being released, we reset the informa-
tion recorded for that block to prevent new blocks
allocated to the same location inheriting stale
information. Each BTE allows at most two most
recentaccesstimesrecorded init. Whenever anew
time is added, the oldest time is replaced if the
BTE is full. In addition, to manage efficiently the
memory space held by block table(s), atimestamp
is set in each table entry at directory levels. Each
time the block table is looked up in a hierarchical
way to record a new access time, the time is also
recorded as a timestamp in each directory entry
that has been passed. In this way, each directory
entry keepsthe mostrecenttimestamp among those
of all its direct/indirect children entries when the
table is viewed as a tree. The entries of the table
are allocated in an on-demand fashion.

The memory consumption of the block table
can be flexibly controlled. When system memory
pressure istoo highandthe system needsto reclaim
memory held by the table, it traverses the table

with a specified clock time threshold for recla-
mation. Because the most recent access times are
recorded inthe directories, the systemwill remove
a directory once it finds its timestamp is smaller
than the threshold, and all the subdirectories and
BTEs under it will be removed.

Forming Sequences

When the bank is full, it is the time to traverse all
the blocks in the bank to collect all the sequences.
To ensure the sequentiality and the stability re-
quirementofasequence, the algorithm determines
that the last block (A) of a developing sequence
should not be coalesced with the closest block (B)
in the bank if the two blocks belong to one of the
following cases:

. Block B is not close enough to block A. This
includes the case that the LBN (Logical
Block Number) of block B is less than that
of block A, where a long rotation time is
involved to move the disk head from block
A to block B. Currently, DULO uses 4 as
the distance threshold. The reason is that,
if the distance between block B and block
A is within the threshold, the read-ahead
mechanism in most hard drives, which is
enabled by default, can fetch block B into
disk caches automatically after it fetches
block A. So the cost of reading of block B
is very cheap.

. Block B and block A are not sequentially
fetched from disk this time. If the most re-
cent time stamp of block B is not greater
than the most recent time stamp of block
A by 1, the accesses of block A and block
B are intersected by the access of the third
block, and high cost disk head seeks are
involved.

. Block B and block A were not sequentially
fetched from disk last time. This includes
the case where one and only one of the two
blocks was not accessed before the current

111

Application of both Temporal and Spatial Localities in the Management of Kernel Buffer Cache

clock time (i.e., it has only one timestamp),
and the case that their non-recent time
stamps have a difference larger than 1.

. The current sequence size reaches 128,
which is the maximal allowed sequence
size and we deem to be sufficient to amor-
tize a disk operation cost.

If any one of the conditions is met, a complete
sequence has been formed and a new sequence
starts to be formed. Otherwise, block B becomes
part of the sequence, the following blocks will be
tested continuously.

The DULO Replacement Algorithm

Thereare two challenging issuesto be addressedin
the design of the DULO replacement algorithm.

The first issue is the potentially prohibitive
overhead associated with the DULO scheme. In
the strict LRU algorithm, both missed blocks and
hit blocks are required to move to the stack top.
This means that a hit on a block in the eviction
section is associated with a bank sequencing cost
and a cost for sequence ordering in the eviction
section. These additional costs that can incur in a
system with few memory misses are unacceptable.
In fact, the strict LRU algorithm is seldom used
in real systems because of its overhead associated
with every memory reference (Jiang et al. 2005).
Instead, its variant, the CLOCK replacement
algorithm, has been widely used in practice. In
CLOCK, when a block is hit, it is only flagged
as young block without being moved to the stack
top. When a block has to be replaced, the block
at the stack bottom is examined. If it is a young
block, it is moved to the stack top and its *“young
block™ status is revoked. Otherwise, the block
is replaced. It is known that CLOCK simulates
LRU behaviors very closely and its hit ratios are
very close to those of LRU. For this reason, we
build the DULO replacement algorithm based
on the CLOCK algorithm. That is, it delays the
movement of a hit block until it reaches the stack

112

bottom. In this way, only block misses could trig-
ger sequencing and the eviction section refilling
operations. While being compared with the miss
penalty, these costs are very small.

The second issue is how the sequences in the
eviction section are ordered for replacement ac-
cording to their temporal and spatial locality. We
adopt an algorithm similar to GreedyDual-Size
used in Web file caching (Cao et al. 2007). It
makes its replacement decision by considering the
recency, size, and fetching cost of cached files. In
our case, file size isequivalentto sequence size, and
file fetching costisequivalenttothe I/O operation
cost for a sequence access. For sequences whose
sizes are distributed in a reasonable range, which
is limited by bank size, we currently assume their
fetching cost is the same. Our algorithm can be
modified to accommodate cost variance if neces-
sary in the future.

The DULOalgorithmassociates each sequence
with a value H, where a relatively small value
indicates the sequence should be evicted first. The
algorithm has a global inflation value L, which
records the H value of the most recent evicted
sequence. Whenanew sequence s isadmitted into
the eviction section, its H value is set as H(s) =
L + 1/size(s), where size(s) is the number of the
blocks containedins. The sequencesintheeviction
sectionare sorted by their H values with sequences
of small H values at the LRU stack bottom. In the
algorithm a sequence of large size tends to stay at
the stack bottom and to be evicted first. However,
if a sequence of small size is not accessed for a
relatively long time, it will be replaced. This is
because a newly admitted long sequence could
have a larger H value due to the L value, which is
continuously being inflated by the evicted blocks.
When all sequences are random blocks (i.e., their
sizes are 1), the algorithm degenerates into the
LRU replacement algorithm.

As we have mentioned before, once a bank
size of blocks are replaced from the eviction sec-
tion, we take the blocks in the sequencing bank to
form sequences and order the sequences by their

Application of both Temporal and Spatial Localities in the Management of Kernel Buffer Cache

H values. Note that all these sequences share the
same current L value in their H value calcula-
tions. With a merge sorting of the newly ordered
sequence list and the ordered sequence list in the
eviction section, we complete the refilling of the
eviction section, and the staging section ends up
with only the correlation buffer.

PERFORMANCE RESULTS

To demonstrate the performance improvements
of DULO on a modern operating system, we
implement it in the recent Linux kernel 2.6.11.
To exhibit the impact of introducing spatial lo-
cality into replacement decisions under different
circumstances, we run two types of applications,
whose 1/0 operations are mostly file accesses
and VM paging respectively. As file system
fragmentation may have substantial impact on
system performance, we also test DULO on an
aged file system.

The DULO Implementation

As many other Unix variants, Linux usesan LRU
variant as its replacement policy, which brings up
some implementation issues. So let’s start with
a brief description of the implementation of the
Linux replacement policy.

Linux Caching

Linux adopts an LRU variant similar to the 2Q
replacement (Johnson el al. 1994). The Linux 2.6
kernel groups all the process pages and file pages
into two LRU lists called the active list and the
inactive list. As their names indicate, the active
list is used to store recently actively accessed
pages, and the inactive list is used to store those
pages that have not been accessed for some time.
Afaulted-in page is placed at the head of the inac-
tive list. The replacement page is always selected
at the tail of the inactive list. An inactive page is

promoted into the active list when it is accessed
as a file page, or it is accessed as a process page
and itsreference is detected at the inactive list tail.
An active page is demoted to the inactive list if it
is determined to have not been recently accessed.
Linux uses an adaptive method to refill inactive
list with pages picked from active list. When the
page reclaiming at the tail of the inactive list
becomes difficult, more pages are picked from
active list to inactive list.

Implementation Issues

Inour prototype implementation of DULO, we do
notreplace the original Linux page frame reclaim-
ing code with a faithful DULO scheme imple-
mentation. Instead, we opt to keep the existing
data structure and policies mostly unchanged, and
seamlessly adapt DULO into them. We make this
choice, which has to tolerate some compromises
of the original DULO design, to serve the pur-
pose of demonstrating what improvements a dual
locality consideration could bring to an existing
spatial-locality-unaware systemwithout changing
its basic underlying replacement policy.

In Linux, we partition the inactive list into a
staging sectionand an eviction section because the
list is the place where new blocks are added and
old blocks are replaced. To keep DULO effective
and make it cooperate well with existing policies
in Linux, both staging section and eviction sec-
tion need to have reasonable lengths, which are
now limited by inactive list. The length of evic-
tion section presents DULO’s ability to control
the eviction order of the pages. The longer the
eviction is, the more power DULO has to protect
the high-cost random blocks from being evicted.
Different with other LRU variants, where newly
fetched pages enter the head of the only list, inac-
tive list provides a shorter evaluation period for
newly fetched pages, during which frequently
referenced ones are re-visited and promoted to
active list and unfrequently referenced ones are
evicted.

113

Application of both Temporal and Spatial Localities in the Management of Kernel Buffer Cache

The anonymous pages that do not yet have
mappings on disk are treated as random blocks
until they are swapped out and are associated with
some disk locations. To map the LBN (Logical
Block Number) of a block into a one-dimensional
physical disk address, we use atechnique described
in (Schindler et al. 2002) to extract track bound-
aries. To characterize accurately block location
sequentiality, all the defective and spare blocks
on disk are counted. We also artificially place
a dummy block between the blocks on a track
boundary in the mapping to show the two blocks
are non-sequential.

The experimentis conducted ona Dell desktop
with a single 3.0GHz Intel Pentium 4 processor,
512MB memory, and a\Western Digital 7200 RPM
IDE diskwithacapacity of 160GB. The read-ahead
mechanism built in the hard drive is enabled. The
operating system is Redhat WS4 with its kernel
updated to Linux 2.6.11. The file system is Ext2.
In the experiments, we change the memory sizes
available for benchmarks to observe their perfor-
mance with different memory sizes.

Experiment Results on File Accesses

In the evaluation of impact of DULO on the per-
formance of file access, we select benchmarks
that represent different access patterns, including
almost-all sequential accesses (TPC-H), almost
all random accesses (diff), and mixed 1/0 access
patterns (BLAST, PostMark, LXR). DULO shows
the most performance advantages with bench-
marks that have considerable amount of both short
sequences and long sequences by increasing the
number of disk accesses to long sequences and
keeping data of short sequence in memory.

Here are insights on the experiment results.
First, the increases of sequence sizes are directly
correlated to the improvement of the execution
times or 1/O throughputs. Let us take BLAST
as an example. With a memory size of 512MB,
Linux has 8.2% accesses whose sequence sizes
equal to 1, while DULO reduces this percentage

114

to 3.5%. At the same time, in DULO there are
57.7% sequences whose sizes are larger than 32,
compared with 33.8% in Linux. Accordingly, there
isa20.1% execution time reduction by DULO. In
contrast, with the memory size of 192MB DULO
reduces randomaccesses from 15.2%to4.2% and
increases sequences longer than 32 from 19.8% to
51.3%. Accordingly, there is a 53.0% execution
time reduction. The correlation clearly indicates
that the size of requested sequence isacritical fac-
tor affecting disk performance and DULO makes
its contributions through increasing sequence
sizes. Second, DULO increases the sequence
size without excessively compromising temporal
locality. This is demonstrated by the small differ-
ence of hit ratios between Linux and DULO. For
example, DULO reducesthe hitratios of PostMark
by 0.53%~1.6%, while it slightly increases the hit
ratio of BLAST by 1.1% ~ 2.2%. In addition, this
observation also indicates that reduced execution
timesand increased server throughputs are results
oftheimproveddisk I/0 efficiency, rather than the
reduced I/O operations in terms of the number of
accessed blocks, whichisactually the objective of
traditional caching algorithms. Third, sequential
accesses are important in leveraging the buffer
cache filtering effect by DULO. We observe that
DULO achieves more performance improvement
for BLAST than it does for PostMark and LXR.
BLAST has over 40% sequences whose sizes are
larger than 16 blocks, while PostMark and LXR
have only 30% and 15% such sequences. The
small portion of sequential accesses in PostMark
and LXR make DULO less capable of keeping
random blocks from being replaced because there
are not sufficientnumber of sequentially accessed
blocks to be replaced first.

Meanwhile, DULO has only limited or little
influence on the performance of workloads with
almost-all-sequential and arandom accesses. Take
TPC-Handdiffasexamples. Workload TPC-H has
morethan 85% ofthe sequences thatare longer than
16blocks. Forthisalmost-all-sequential workload,
DULO canonlyslightly increase the sizes of short

Application of both Temporal and Spatial Localities in the Management of Kernel Buffer Cache

sequences, and accordingly reduce executiontime
by 2.1% with amemory size of 384MB. However,
forthe almost-all-randomworkload diff, more than
80% of the sequences are shorter than 4 blocks.
Unsurprisingly, DULO cannot create sequential
disk requests from workload requests consisting
of purely random blocks. As expected, DULO
cannot reduce the execution time.

Experiment Results with
an Aged File System

The free space of an aged file system is usually
fragmented, and sometimes it is difficult to find
a large chunk of contiguous space for creating or
extending files. This usually causes large files to
consist of anumber of fragments of various sizes,
and filesinthe same directory to be dispersed onthe
disk. This non-contiguous allocation of logically
related blocks of data worsens the performance
of 1/0-intensive applications. However, it could
provide DULO more opportunities to show its
effectiveness by trying to keep small fragments
in memory.

The experiments with an aged file system
shows that, for workloads dominated with long
seguential accesses such as TPC-H, an aged file
system degrades its performance. For example,
with a memory size of 448MB, the execution
time of TPC-H on an aged file system is 107%
more than on a fresh file system. This is because
on an aged file system large data files scanned
by TPC-H are broken into pieces of various
sizes. Accessing of small pieces of data on disk
significantly increases I/O times. Dealing with
sequences of various sizes caused by aged file
system, DULO can reduce execution time by
a larger percentage than it does on a fresh file
system. For TPC-H, with a fresh file system
DULO can hardly reduce the execution time.
However, with an aged file system DULO man-
ages to identify sequences of small sizes and
give them a high caching priority, so that their
high 1/0 costs can be avoided. This results in a

16.3% reduction of its execution time with the
memory size of 448MB.

For workloads with patterns mixed of sequen-
tial accessesand random accesses, suchasBLAST
and PostMark, an aged file system has different
effects on DULO’s performance, depending on
sequentiality of the workloads and memory sizes.
For BLAST, which abounds in long sequences,
DULO reduces its execution time by a larger per-
centage on an aged file system than it does on a
fresh file system when memory size is large. For
workloads with a relatively small percentage of
long sequences, the reduction of long sequences
makes its access pattern close to that in almost-
all-random applications, where the lack of suf-
ficient long sequences causes short sequences to
be replaced quickly. Thus we expect that DULO
may reduce less execution time with an aged file
system than it does with a fresh file system. This
is confirmed by our experimental results.

While programs and file systems are designed
to preserve sequential accesses for efficient disk
accesses, DULO is important in keeping system
performance from degradation due to an aged
file system and to help retaining the expected
performance advantage associated with sequential
accesses.

Experiments on Virtual Memory Paging

In order to study the influence of the DULO
scheme on VM paging performance, we use a
representative scientific computing benchmark
--- sparse matrix multiplication (SMM) from an
NIST benchmark suite SciMark?2. The total work-
ing set, including the result vector and the index
arrays, is around 348MB.

To cause the system paging and stress the swap
space accesses, we have to adopt small memory
sizes, from 336MB to 440MB, including the
memory used by the kernel and applications.

To increase spatial locality of swapped-out
pages in the disk swap space, Linux tries to allo-
cate contiguous swap slots on disk to sequentially

115

Application of both Temporal and Spatial Localities in the Management of Kernel Buffer Cache

reclaimed anonymous pages in the hope that they
would be efficiently swapped-in in the same order.
However, the data access pattern in SMM foils
the system effort. The swap-in accesses of the
vector arrays recording the positions of elements
in a matrix turn into random accesses, while the
elements of matrix elements are still sequentially
accessed. This explains why DULO can signifi-
cantly reduce the execution times of the program
(by up to 38.6%). This is because DULO detects
the random pages in the vector array and caches
them with a higher priority. Because the matrix
is a sparse one, the vector array cannot obtain
sufficiently frequent reuses to allow the original
kernel to keep them from being paged out. Inaddi-
tion, the similar execution times between the two
kernels when there is enough memory (exceeding
424MB)to hold the working setshown inthe figure
suggest that DULQO’s overhead is small.

RESEARCH ON IMPROVING AND
EXPOSING ON-DISK LAYOUT FOR
UPPER-LEVEL SOFTWARES

We know that the disk head seek time far domi-
nates 1/0O data transfer time, and the efficiency of
accessing sequential data on the disk can be one
order of magnitude higher than that of accessing
of random data. As the hard disk has been and is
expected to continue to be the mainstream on-line
storage device in the foreseeable future, efforts
on making sure on-disk data are sequentially
accessed are critical to maintain a high 1/0 per-
formance. Exposing information from the lower
layers up for better utilization of hard disk is an
active research topic.

Most of the existing work focuses on using
disk-specific knowledge forimproving data place-
ments on disk that facilitate the efficient servicing
of future requests. For example, Fast File System
(FFS) and its variants allocate related data and
metadatainto the same cylinder group to minimize
seeks (Mckusick et al. 1994; Ganger et al. 1997).

116

There have been many other techniques to control
the data placement on disk (Arpaci-Dusseau et al.
2003; Blacketal. 1991) or reorganize selected disk
blocks (Hsu el al. 2003), so that related objects
are clustered and the accesses to them become
more sequential. Traxtent-aware file system ex-
cludes track boundary block from being allocated
for better disk sequential access performance
(Schindler et al. 2002). The effort on improving
access sequentiality through statically arranging
data layout on the disk is effective only when the
actually accesses take place in the assumed order.
If not or the access order changes from time to
time, many random accesses can still occur.

As the techniques focusing only on the disk
alone cannot fully solve the issue, another com-
plimentary effort, represented by DULO, is to
expose the data layout information to the upper-
lever software such as the buffer cache manage-
ment module in the OS kernel, so that they can
leverage the information in their policies for a
higher I/O throughput. Besides DULO, DiskSeen
is another example of such effort (Ding et al.
2007). DiskSeen improves the effectiveness of
prefetching by using the disk layout knowledge
to find the on-disk data access sequences. In ad-
dition to the conventional file-level prefetching,
the disk-level prefetching provides substantially
higher 1/0O performance for many patterns of ac-
cesses, especially for access of a large number
of small files. It is noted that the two efforts are
complementary and synergistic.

While statically improvement data layout on
the disk provides the opportunity of long sequence
of data access, leveraging the layout information
in the upper-level software can maximize the
performance potential of sequential access and
minimize the performance penalty incurred by
access random data.

We believe that exposing more detailed
information on the storage system, such as the
configuration of disk array, the data layout on a
disk, and buffer cache size on the storage control-
ler, to the various software layers of the /O stack,

Application of both Temporal and Spatial Localities in the Management of Kernel Buffer Cache

including kernel of OS, would be of great potential
for improving I/O performance and removing the
painful I/O bottleneck. Achallenge inthe approach
is how to make it reconcile with the virtualization
technologies and effectively deal with portability
issues, which all require isolation from the low-
level details to some extent.

CONCLUSION

In this chapter, we identify a serious weakness of
lacking spatial locality exploitationin I/O caching,
and propose a new and effective memory man-
agement scheme, DULO, which can significantly
improve I/O performance by exploiting both tem-
poral and spatial locality. Our experiment results
show that DULO can effectively reorganize ap-
plication 1/O request streams mixed with random
and sequential accesses in order to provide amore
disk-friendly request stream with high sequenti-
ality of block accesses. We present an effective
DULOreplacementalgorithmto carefully tradeoff
random accesses with sequential accesses and
evaluate itusing traces representing representative
access patterns. The results of experiments on a
prototype implementation of DULO in a recent
Linux kernel show that DULO can significantly
improve the 1/0 performance for many applica-
tions from different areas. As DULO represents
a promising effort in removing the 1/0 barrier for
many I/O-intensive applications, more researchin
this direction is called to reveal its full potential
and address its issues.

REFERENCES

Arpaci-Dusseau, R. H., Arpaci-Dusseau, N. C.,
Burnett, T.E., Denehy, T.J., Engle, H. S., Gunawi,
J., & Nugent, F. I. Popovici. (2003). Transform-
ing Policies into Mechanisms with Infokernel.
19th ACM Symposium on Operating Systems
Principles.

Black, D., Carter, J., Feinberg, G., MacDonald,
R., Mangalat, S., Sheinbrood, E., et al. (1991).
OSF/1 Virtual Memory Improvements. USENIX
Mac Symposium.

Cao, P, & Irani, S. (1997). Cost-Aware WWW
Proxy Caching Algorithms. USENIX Annual
Technical Conference.

Ding, X., Jiang, S., Chen, F., Davis, K., & Zhang,
X.(2007). DiskSeen: Exploiting Disk Layout and
Access History to Enhance 1/0 Prefetch. USENIX
Annual Technical Conference.

Ganger, G., & Kaashoek, F. (1997). Embedded
Inodes and Explicit Groups: Exploiting Disk
Bandwidth for Small Files. USENIX Annual
Technical Conference.

Hsu, W. W., Young, H. C., & Smith, A. J. (2003).
The Automatic Improvement of Locality in Stor-
age Systems. Technical Report CSD-03-1264,
UC Berkeley.

lyer, S., & Druschel, P. (2001). Anticipatory
Scheduling: A Disk Scheduling Framework to
Overcome Deceptive Idleness in Synchronous
1/0. 18th ACM Symposium on Operating Systems
Principles.

Jiang, S., Chen, F., & Zhang, X. (2005). CLOCK-
Pro: An Effective Improvement of the CLOCK
Replacement. USENIX Annual Technical Con-
ference.

Johnson, T., & Shasha, D. (1994). 2Q: A Low
Overhead High Performance Buffer Management
ReplacementAlgorithm. In International Confer-
ence on Very Large Data Bases, (pp. 439-450).

Mckusick, M. K., Joy, W. N., Leffler, S. J., &
Fabry, R. S. (1884). A Fast File System for UNIX.
Transactions on Computer Systems, 2(3).

Schindler, J., Griffin,J. L., Lumb, C.R., & Ganger,
G. R. (2002). Track-Aligned Extents: Matching
Access Patterns to Disk Drive Characteristics.
USENIX Conference on File and Storage Tech-
nologies.

117

118

Chapter 7

Alleviating the Thrashing
by Adding Medium-
Term Scheduler

Moses Reuven
Bar-1lan University, Israel

Yair Wiseman
Bar-1lan University, Israel

ABSTRACT

A technique for minimizing the paging on a system with a very heavy memory usage is proposed. When
there are processes with active memory allocations that should be in the physical memory, but their accu-
mulated size exceeds the physical memory capacity. In such cases, the operating system begins swapping
pages in and out the memory on every context switch. The authors lessen this thrashing by placing the
processes into several bins, using Bin Packing approximation algorithms. They amend the scheduler to
maintain two levels of scheduling - medium-term scheduling and short-term scheduling. The medium-
term scheduler switches the bins in a Round-Robin manner, whereas the short-term scheduler uses the
standard Linux scheduler to schedule the processes in each bin. The authors prove that this feature does
not necessitate adjustments in the shared memory maintenance. In addition, they explain how to modify
the new scheduler to be compatible with some elements of the original scheduler like priority and real-
time privileges. Experimental results show substantial improvement on very loaded memories.

INTRODUCTION

One of the most substantial computer resources is
the RAM. Multitasking operating system executes
several processes simultaneously. Each one of the
processes uses several sections of the memory.
The connection of the memory and the scheduling
strategy is an old subject for research (Zahorjan et

DOI: 10.4018/978-1-60566-850-5.ch007

al., 1991), (Wiseman and Feitelson, 2003).
Usually, most of the processes do not make
use of the entire memory that has been allocated
for them. This shows the way to the principle of
virtual memory (Denning, 1970): Many processes
have allocations in the virtual memory, but only
the pages which are currently required will be
physically stored in the memory; therefore, many
more processes can be executed in parallel, while
occupying less physical memory space.

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of 1GI Global is prohibited.

Alleviating the Thrashing by Adding Medium-Term Scheduler

Various operating systems implement the
virtual memory concept using the paging model
i.e. the operating system will load a memory
page into the physical memory only if a process
asks for it. If no free memory frame is available,
the operating system will swap out a page from
the physical memory to the secondary memory
(hard disk). Different techniques for choosing
which pages the operating system will swap out
to the disk have been suggested over the years
(Belady, 1966).

When large memaory space is needed, swapping
pages in and out the memory will consume a large
portion of the CPU cycles. This situation is called
Thrashing (Abrossimov et al., 1989). Thrashing
causes a severe overhead time and as a result a
substantial slowdown of the system. Some stud-
ies for alleviating the unwanted consequences of
the thrashing have been carried out over the years
(Galvin and Silberschatz, 1998).

In (Jiang and Zhang, 2001), (Jiang and Zhang,
2002), (Jiang, 2009), the authors propose giving
one of the interactive processes a privilege. The
process’s pages will not be swapped out. As a
result, the privileged process will be executed
faster and therefore will free its memory alloca-
tion earlier. This feature may assist the operating
system freeing enough memory fast and to get
back to a normal behavior. However, this tech-
nique will be advantageous only if the memory
allocations slightly exceed the physical memory.
This technique will work like a First-In-First-
Out scheduler if many processes produce a large
memory excess. Insuch cases this FIFO continues
and the system will keep on thrashing. Linux 2.6
version hasasimilar mechanism and its scheduler
is described in section 2.

In (Batat and Feitelson, 2000) the authors
suggest not admitting jobs that do not fit into the
current available memory. The system waits for
several processes to finish their execution and
only when enough memory is freed, a new job
can be admitted. The authors also discuss the
dilemma how a memory size needed by a new

job can be assessed. This technique is essentially
very similar to the VMS technique that uses the
“Balance Sets” method. However, the authors of
this paper have implemented the “Balance Sets”
concept for distributed systems.

In (Nikolopoulos, 2003) the author handles the
thrashing problem by adjusting the memory needs
of aprocess to the current available memory. This
solution is quite different from the other solu-
tions, because it modifies the processes instead
of modifying the operating system.

Some hardware solutions for trashing are also
have been suggested which are implemented in
the cache (Gonzalez et al., 1997), (Chu and Ito,
2000). Typically LRU is the basic scheme that
both hardware and software victim selection al-
gorithms employ. However, the LRU algorithm is
manipulated differently by hardware and software
implementations. Naturally, hardware solutions
must be much simpler for implementation; but on
the other hand, hardware solutions can use data that
the operating system does not know e.g. the cache
candistinguish between an instructions block and
a data block; while the operating system does not
distinguish. Clearly, this parameter can be very
useful for victim selection algorithms.

This chapter suggests a technique that modi-
fies the traditional process scheduling method by
adding a new a layer of scheduling (Reuven and
Wiseman, 2005), (Reuven and Wiseman, 2006).
By using this modification, the operating system
can swap in and out fewer pages; therefore alle-
viating the slowdown stemming from thrashing.
The technique suggested in this chapter is not
restricted to aspecific operating system; therefore,
any multitasking paging system can employ it.
The figures and the results given in this chapter
have been produced by running benchmarks on
the Linux operating system (Card et al., 1998).
However, as has been noted, Linux is just an ex-
ample to show the feasibility of our concept.

The rest of the chapter is organized as fol-
low. Section 1 describes the Linux scheduling
algorithms. Section 2 explains the Bin Packing

119

Alleviating the Thrashing by Adding Medium-Term Scheduler

problem. Section 3 presents the reduced paging
algorithm. Finally, section 4 gives the results and
evaluates them.

THRASHING IN THE LINUX
OPERATING SYSTEM

Traditionally, UNIX scheduler is priority based
(Vahalia, 1996). The process scheduling algo-
rithm of Linux is based on the traditional UNIX
scheduler. The Linux scheduler is well-known
and a description of it can be found in many
places e.g. (Beck at el. 1998), (Komarinski and
Collett 1998).

Linux virtual memory mechanism along with
the paging techniques gives Linux the ability
to manage many processes, even when the real
memory requirementsare larger than the available
physical memory. However, the virtual memory
mechanism cannot handle some circumstances.
If the memory space required is too much over a
short time, the swapping mechanism cannot sat-
isfy the memory requirements quickly; therefore
pages are swapped in and out time and again and
a little progress is made.

Linux will kill processes if thrashing occurs
andthe system is out of swap space. Insome sense
there is nothing else that the kernel is able to do
in such situation, because memory is needed but
no more physical or swap memory is available
(Gorman, 2004), (Marti, 2002). If a thrashing
occurs, Linux kernel will kill the most memory
consuming processes. This feature is very harsh;
therefore its implications might be drastic. For
example, if a server runs several applications
with mutual dependencies, killing one of these
applications may yield unexpected results.

Linux 2.6 version has implemented the token-
ordered LRU policy (Jiangand Zhang, 2005). The
key ideaofthispolicy iseliminating page swapping
atsome cases called by the developers “false LRU
pages”. Sometimes, a page of a sleeping process
is swapped out, even though it would have not

120

been swapped out if the process was not sleeping.
The concept of the token-ordered LRU policy is
setting one or multiple tokens in the system. The
token is taken by one process when a page fault
occurs. The system prevents the false LRU pages
for the process holding the token from occurring.
This feature allows the process holding the token
a quick establishing of its working set. By giving
this privilege to a process, the total number of
false LRU pages is reduced and the pool of the
competing pages is getting ordered. However, this
policy can be beneficial only when the memory
needs slightly exceed the physical memory space.
Alarge memory excess of many processes will be
treated by this method as First-In-First-Out, while
other processesstill vie formemory allocationsand
thrash; therefore, in (Jiang and Zhang, 2005) the
traditional killing approach is of Linux is kept for
severesituations. Inthis chapter another technique
is suggested that can also handle the cases that
were handled by the killing methods.

Another problem is that the process selection
algorithm of Linux can mistakenly select a pro-
cess executing an endless loop. Such a selection
will even worsen the thrashing. Also selecting a
very long process that is executed for some hours
will be damaging. The selection algorithm can
just estimate which the shortest process is, but
its estimation might be wrong.

BIN PACKING

The suggested technique needs a set of all the
processesthatare currently in the virtual memory.
This set is split into several groups, such that the
total memory size of each group is as close as pos-
sible to the size of the available real memory.
These groups of processes can be built as fol-
lowed: There is a set of processes P, each with a
memory allocation. Let M, denote the maximal
working set size that might be needed by process
P.. We need an algorithm which splits these M.’s
into as few groups as possible, with the sum of

Alleviating the Thrashing by Adding Medium-Term Scheduler

the Ms in each group not exceeding the size of
the real memory. Practically, the kernel and some
other daemons occupy part of the memory, so the
sum should not exceed a smaller memory size.
This splitting problem is well known and called
the Bin Packing problem (Scholl et al., 1997).

The Bin Packing problem is defined as a set
of numbers X, X,, ..., X , with X, € [0, 1] for
eachi. The problem is finding the smallest natural
number m for which:

X, X, .., X, can be partitioned into m
sets.

* The sum of the members of each set is not
higher than one.

The Bin Packing problem is NP-hard (Karp,
1972). However, some polynomial time approxi-
mations have been introduced over the years, such
as (Fekete and Schepers, 2001), (Gent, 1998) and
(Martello and Toth, 1990). The approximation
algorithms use no more than (1+E)*OPT(l) num-
ber of bins, where OPT(l) is the number of bins
in the optimal solution for case I. If E is smaller,
the result will be closer to the optimal solution,
but unfortunately good approximations are usu-
ally time consuming (Coffman et al., 1997). We
would like to choose one of the approximation
algorithms which is not time consuming, but yet
tries minimizing (1+E)*OPT(I).

A simple idea of an approximation algorithm
for the Bin Packing problem is the greedy ap-
proach (Albers and Mitzenmacher, 2000), also
known as the First-Fit approach. This algorithm
is defined as follow:

. Sort the vector X, X,, ..., X_ by the allo-
cated memory size.

. Open a new bin and put the highest number
in it.

* While there are more numbers

. If adding the current number to one of the
existing bins exceeds the size of the bin

° Open a new hin and put the current

number in it.
. Else
° Put the current number in the current
bin.

In our tests, we used a version of this approxi-
mation algorithm with a slight modification. We
usually achieved the minimal number of bins
and the cost of execution time was usually low.
Below we describe the version that has been use
in this chapter..

BIN PACKING BASED PAGING

It is well known that increasing the level of mul-
titasking in any operating system may sometimes
cause thrashing. In order to avoid thrashing, we
would like to suggest a new approach: All the
processes will be split into several groups such
that the sum of physical memory demands within
each group will not be higher than the amount of
physical memory available on the machine. In
(Alversonetal., 1995) the authors give some ideas
to use a Bin Packing approximation (First Fit) to
improve the Backfilling scheduling of a specific
Operating System (Tera). We would like to use
the Bin Packing Algorithms to improve the Linux
scheduling using more approximations.

Medium-Term Scheduler

A new scheduler procedure will be added to the
Linux operating system. The new scheduler will
operate in the manner of the medium-term sched-
uler, which was part of some operating systems
(Stallings, 1998). The medium-term scheduler
will load the groups into the Ready queue of the
Linux scheduler in a Round-Robin manner. The
traditional Linux scheduler will do the schedul-
ing within the current group in the same way the
scheduling is originally done on Linux machines.
The time slice of each group in the medium-term

121

Alleviating the Thrashing by Adding Medium-Term Scheduler

scheduler will be significantly higher than the
average time allocated to the processes by the
original Linux scheduler. The processes in the
real memory will not be able to cause thrashing
during the execution of the group, because their
total size is not higher than the size of the avail-
able physical memory i.e. the size of each bin.
Only at the beginning of each group execution
there will be an intensive swapping, because the
new group’s pages are swapped into the memory.
This approach can improve the system ability to
support memory-consuming processes in a more
tolerant way than killing them.

There are some methods to calculate the work-
ing set size needed by each process. One of these
methods can be found in (Zhou et al., 2004). In
this paper, the authors suggest a way that adds
7-10% overhead. Obviously, such an overhead is
time consuming and not suitable for the concept
of the bin packing approach. The scheduler needs
to know the working set size on every context
switch and calculating this working set often is
costly. We use another simple approach. The resi-
dent size of each process was taken from /proc/
PROCESS_NO/statusfile. Thissizeisthe process’
last pages total size. This size is not accurate and
if the system is not busy, the resident size may
include large portions of stale pages that are not
currently essential. However, when the system
is not busy, there will be no thrashing and this
overestimation will make no harm.

In our implementation, the group time slice
was half a second or one second, whereas the
Linux scheduler gives time slices of some dozen
milliseconds. When Linux thrashes, any context
switch causes many page faults, whereas with the
medium-term scheduler, intensive swapping will
occur only when switching between groups. This
lets the operating system in our implementation
swapping a significant amount of pages only in a
few percents of the cases, in contrast to conven-
tional Linux during thrashing conditions.

The processes which are not in the current
group should be kept on a different queue, so that

122

Linux scheduler will not be able to see them. In
order to implement this feature, we added a new
record to Linux kernel code. This record has the
same structure as the “active” and “expired” re-
cords described in (Beck et al., 1998) and it holds
the hidden processes.

When the last group finishes its execution,
the medium-term scheduler is invoked, and re-
builds the process groups, taking into account
any changes to the old processes (e.g. exited or
stopped) and adding any new processes to the
groups.

Sometimesthe currentgroup finishes executing
all the processes within the time slice awarded to
itby the medium-term scheduler. Evenif thereare
still some processes in the group, these processes
might be sleeping. If not all the processes in the
group are ready to be executed, the Linux scheduler
has been modified to invoke the medium-term
scheduler, which promptly switches to the next
waiting group.

The medium-term scheduler takes the sum of
the memory sizes that are currently needed by the
processes and divides this sum by the available
physical memory size. The quotient is taken to be
the number of bins. After that, the medium-term
scheduler scatters the processes between these
bins. The medium-term scheduler uses the greedy
algorithm until the medium-term scheduler is
unable to fit another process into the bins. Next,
the medium-term scheduler tries to find room for
all the remaining processes in the existing bins.
If it fails to find room in one of the existing bins,
it exceeds the size of the smallest bin by add-
ing the unfitting process to it. The original Bin
Packing problem does not allow such an excess,
but in this case it might be preferable to have a
few page faults within a group than adding an
additional bin.

One of our assumptions for a working solu-
tion is that there exist a considerable number
of processes for a good bin packing, and some
small memory demands processes are even better.
However, if one process demand is larger than

Alleviating the Thrashing by Adding Medium-Term Scheduler

the available memory size, the solution will not
be effective and the process will thrash within
itself. In fact, most of the thrashing cases are not
caused by one process. However, if such a case
does occur, none of the solutions that have been
presented insection 1 can be useful. Insuch acase,
only the original Linux solution that Kills such a
process will be beneficial, but it can be harmful
if the process is essential.

Swapping Management

When the time slice of a group ends, a context
switch of groups will be performed. This context
switch will probably cause many page faults:
The kernel uses its swap management to make
room for the processes of the new group and this
procedure might be long and fatiguing. The previ-
ous group of processes has most probably used
up most of the available physical memory, and
when the swap thread executes the LRU function
to find the best pages to swap out to the disk, it
will probably find pages of the old group. This
procedure iswasteful because the paging function
is performed separately for every new required
page. Linux kernel does not know at the context
switch time that the recently used pages of the
previous group will not be needed for along time,
and can be swapped out.

Inorderto overcome this Linux kernel manage-
ment, we modified Linux kernel as follow: when
the medium-term scheduler isinvoked, it calls the
Linux swap management functions to swap out
all of the pages that belong to the processes of
the previous group. This gives Linux a significant
amount of empty frames for the new group. This
swapping management approach is much quicker
than incrementally loading the pages of the new
process group, and for each page fault searching
forthe oldest page inthe physical memory to swap
out. When around of the medium-term scheduler
is completed, the medium-term scheduler will
rebuild the process groups and some processes
may migrate from one group to another; hence the

medium-term scheduler does not call the Linux
swap management at this point, because it might
swap out pages that may be needed again for the
next group.

Shared Memory

Often, two or more processes share some memory.
Shared memory widely exists in most of the
operating systems and Linux has some tools to
handle it too.

When using the medium-term scheduler, it
will be inefficient to put two processes that share
a large piece of memory into two different groups
of processes. For example, consider the follow-
ing scenario:

Suppose processes A and B share a piece of
memory, process Ais of group #1 and process B is
of group #3. After group #1 completes its execu-
tion, the pages of group #1 are swapped out and
the pages of group #2 are loaded and placed in
the physical memory instead, as we explained in
the previous section. The same swapping happens
when the operating system replaces group #2 by
groups #3. The pages of process B are loaded by
demand, so the same pages, albeit not all of them,
are loaded and swapped twice, once for process
A and once again for process B.

Thissituationisillogical and inefficient; hence,
the medium-term scheduler must put processes
with a large shared memory in the same group.

In order to tackle this situation we must know
which processes share pages, and which pages
they share. Each process that uses a page incre-
ments the “count” field of the page (Bovet and
Cesati, 2003), so reading this field can easily let
the Linux know which pagesare shared. However,
the medium-term scheduler must still knowwhich
processes use the page. A naive approach would
be searching the page table of all the processes, in
order to extract the addresses of the given pages.
Obviously, this will be very time consuming and
will probably impair the medium-term scheduler
efficiency.

123

Alleviating the Thrashing by Adding Medium-Term Scheduler

Figure 1. shared memory size of common processes

9

> 8

g 7

E 6

® 5

[}

.54

s 3

8 2

S

g‘!

0

S S S LSS S S E LR R
@ A A@ A& A2

& EEE T I I TS S

process name

It frequently happens that applications which
share a piece of memory will have analmost equal
size of shared memory. If the shared memory stems
from a ‘fork’ system call, the child process will
be created from its parent; hence the size of the
shared memory in the parent process and the child
process will be almost equal, unless the child or
the parents allocate a large piece of new shared
memory. The same will be correct, if processes
share an IPC or a common text segment. If there
is no other shared memory obtained by just one
the processes, the shared memory size will be
almost equal.

Figure 1 shows the shared memory size in
some common cases. The data was obtained from
arunning Linux machine that servesthe Computer
Science department in Bar-1lan University. Many
processes do not have shared memory and they
have been omitted from the figure. However,
when processes do share memory, it can be seen
that they usually have the same size of shared
memory.

Linux calculates the shared memory size of
each process. Based on the shared size character-
istic, we would like to suggest a simple solution
for the issue of large shared memory. When the
medium-term scheduler recalculates the bins of

124

the processes, it will first sort the vector of the
processes by the shared memory size. Then, us-
ing the greedy approximation, the processes with
almost equal shared memory size will usually
be in the same bin or in adjacent bins; hence no
swapping will be needed when replacing the pages
of two processes with shared memory.

We have chosen to use insertion sort for this.
Since we use the old sorted list of processes,
insertion sort is executed in the shortest time
(Manber, 1989).

Group Time Slice

Sometimes we can be lucky and the sizes of the
total memory needs in all the different groups are
almost equal. This is the best situation, because
a fixed time slice that will be given to the groups
is usually quite fair. However, when the sizes of
the total memory allocations are significantly dif-
ferent, some processes might get an implicit high
priority. When the medium-term scheduler uses
the greedy approximation, such a situation usu-
ally occurs when the last processes are assigned
to a bin. The last bin is sometimes almost empty;
hence the processes in this bin gain precedence,
because in the time slice of this bin, there are less

Alleviating the Thrashing by Adding Medium-Term Scheduler

processes vying for CPU cycles. Itshould be noted
that when the size of the last bin is not small, this
solution will function efficiently.

One possible solution is breaking up small
groups and scattering processes belong to the
small groups in other groups. This solution can be
good if the size of the small group is not big and
when there is just one small group. If the size of
the small group is big, scattering it might cause
thrashing in the other groups.

Abetter solution can be a dynamic group time
slices, instead of a constant time slice. E.g. if the
size vector is [1,1,0.5] and the default group time
slice is one second, the medium-term scheduler
should assign each of the first two groups one
second, whereas the last group will get only 0.5
second. (The vector represents the group’smemory
size as the total memory allocations divided by
the total memory available for user application).
This solution gave us the best results; therefore
it has been implemented.

Interactive Processes

The interactive processes should be dealt with
differently. If we treat them the same way as the
non-interactive processes, they will not be able to
be executed as long as their group is not current.
Interactive processes need fast response time and
a few seconds delay can be a major drawback.

To remedy thisdrawback, the scheduler allows
an interactive process which can be identified by
directly quantifying the 1/0O between an applica-
tion and the user (keyboard, mouse and screen
activity) (Etsion et al., 2004), to run in each of
the process groups. So, actually the process will
belong to all the groups, but with a smaller time
slice in each group:

p->time_slice = time_slice(p)/num_of_groups;
This feature can assure us a short response

time for interactive processes while keeping
fairness towards other processes. The resident

pages of interactive processes will be marked
as low priority swappable, so the kernel will not
swap out interactive processes when a group
context switch is done. However, the scheduler
has to calculate the memory needs of interactive
processes in every group.

When a new process is admitted, it will be
handled as an interactive process. The operating
system cannot know whether the new process is
interactive and if the execution of this process is
delayed, it will be irritating for interactive pro-
cesses. After one round of the bins, the scheduler
can assess the nature of the process and treat it
accordingly.

Real Time Processes

The handling of real time processes is somewhat
similar to interactive processes. Real time pro-
cesses must get the CPU as fast as possible. The
management of these processes will be the same
as interactive processes, but with a slight differ-
ence. Real time processes will belong to all the
groups, as the interactive processes do, but they
will not have a shrunken time slice.

The kernel will not swap out Real time pro-
cesses, because they belong to all the groups. In
addition, Real time processes will have the same
privilege Linux traditionally gives them. Itshould
be noted that the scheduler has to calculate their
memory needs in every group as the scheduler
did for the interactive processes. This handling is
identical for FIFO Real-Time processes and for
RR Real-Time processes. This treatment has also
been applied to the “init” process and the “Idle
and Swapper” process of Linux, which cannot
be suspended.

Priority
Another important issue of the bin packing
scheduling discussion is the priority management.

Hypothetically, it might happen that the highest
priority processes belong to one group, whereas

125

Alleviating the Thrashing by Adding Medium-Term Scheduler

the lowest priority processes belong to another.
Then, when Linux switches between the processes
within the groups, the priority is not taken into
account.

One solution can be finding out how many
bins there should be, by calculating the total size
of the memory needs and dividing by the size of
the available physical memory (The size of the
bin), just as the medium-term scheduler always
does. Then, sorting the process list by priority, and
finally, taking the processes from the sorted list
andfilling the binsinaRound-Robinmanner. This
solution cannot be implemented together with the
shared pages solution, because the shared pages
solution requires sorting by the number of the
shared pages, rather than by the priority.

Another solution is assigning different time
slice to each group, according to the average
priority of the processes inside the group. For
each group the average priority is calculated.
A group having a high average priority will be
awarded a longer time slice. This solution was
chosen based on the results that are shown in
section 5.4.

PERFORMANCE RESULTS

Actually, the best way to evaluate the medium
term scheduler is by considering its performance
results. Inthe following subsections, an extensive
evaluation that has been made to the mediumterm
scheduler is described.

TESTBED

We tested the performance of the kernel with the
new scheduling approach using five different
benchmarks to get the widest view we could:

1. SPEC - cpu2000 (SPEC, 2000). The SPEC
manual explicitly notes that attempting to
run the suite with less than 256Mbytes of
memory will cause ameasuring of the paging

126

system speed instead of the CPU speed. This
suits us well, because our aim is precisely to
measure the paging system speed; hence, we
used a machine with just 128MB of RAM.
Using machine with a larger RAM would
have been forced us not to use SPEC.

2. Asynthetic benchmark that forks processes
which demand a constant number of pages
— 8MBytes. The processes use the memory
in a random access; therefore they cause
thrashing. This benchmark was tested within
the range of 16MBytes-136MBytes. The
parent process forks processes whose total
size is the required one, and collects the
information fromthe children. Letus denote
this test by SYNS.

3. Matlab formal benchmark. This benchmark
executessix different Matlab tasks described
in (MATLAB, 2004).

4. Another synthetic benchmark using mas-
sive shared memory allocations. The test
has two processes that share 16MBytes
and has 2 more Mbytes for each one of the
processes. The processes copy parts of their
private memory into the shared memory and
parts of the shared memory into their private
memory inarandomaccess. The benchmark
consists of anumber of such tests according
to the desired size. Let us denote this test as
SYNSHARED.

5. For interactive and real-time processes, we
used the Xine MPEG viewer. It was used to
show a short video clip in a loop.

The benchmarks were executed on a Pentium
2.4GHz with 128MB RAM and a cache of 1MB
running Linux kernel 2.6.9 with Fedora core 2
distribution. The size of the page was 4KBytes.
It should be noted that even though the platform
machine had 128MBytes of physical memory, we
should take into the bin size considerations that a
certain portion of this memory is occupied by the
daemons of Linux/RedHat and the X-windows,
plus the kernel itself along with its threads. After

Alleviating the Thrashing by Adding Medium-Term Scheduler

Figure 2. a. SYN8’s Number of Swaps; b. SYN8’s Execution Time

swaps (millions)
L w '

-

*]
*
1 u n

16 24 32 40 48 56 64

80 88 96 104 112 120 128 136

Processes' total size

StrictLinux = MediumTerm Scheduler

Time (hours)

e = | = =

16 24 32 40 48 56 B4

80 88 9 104 112 120 128 136

Processes’ total size

—#— Sfrict Linux —®— Madium-Term Scheduler

an evaluation of the extra size, we used bins of
96MBytes.

Execution Time

Figure 2a and Figure 2b show the performance of
the synthetic benchmark SYN8. Figure 2a shows
the number of swaps that were performed in both
the schedulers as a function of the total size of the
processes, whereas Figure 2b shows the execution
time of SYNB8 as a function of the same processes’
total size. In these figures, the medium-term
scheduler time slice was one second.

It can be seen that when the size of the pro-
cesses is too large, Linux starts swapping in and
out many more pages. From roughly 64MB Linux
swaps more pages, but there is no noteworthy
influence on the 1/O time, because Linux lets
other processes run while the 1/0 is performed.
Roughly, from 128MB the 1/O buffer is incapable

of responding to all the paging requests, and
the thrashing becomes acute. The medium-term
scheduler dramatically reduces the number of the
page faults; thus, fewer swaps are performed and
the execution time remains reasonable. Processes
that require 144MB or more were sustainable for
the medium-term scheduler, but not for the Linux
scheduler.

We also employed Matlab formal benchmark.
Matlab benchmark is a very memory consum-
ing process. It takes about 290MB with Matlab
7.0.0.19901 (R14) running on our Linux 2.6.9
machine, but when memory pressure becomes
high, Matlabwill be able to continue working when
just 28MB are resident in the physical memory,
whereas 14MB of them are shared memory with
other possible Matlab processes. When we ex-
ecuted several Matlab processes in parallel, the
results were very similar to the synthetic bench-
mark. However, a significantly larger portion of

127

Alleviating the Thrashing by Adding Medium-Term Scheduler

Figure 3. a. SPEC’s Number of Swaps; b. SPEC’s Execution Time

7
w6
85
% 4 M Linux Scheduler
E 3 @ Medium-Term Scheduler
]
z1 - - .
0
v R o + $ &
AR of Ny & 3¢ Q
P njb'ﬁ Qﬁxé ¢ rfb & p é)@ﬁ . 'ﬁoﬁ
& & § B
® fﬁ*&
& ¢
S
Test name
(a)

M Linux Scheduler
@ Medium-Term Scheduler

Time (hours)

&

i
wln
0
R ’ﬁ@ é@

s &
P S

& & & ¢
@’#& & g

Test name

”.Q¢

(b)

the swap area was necessary, because just 14MB
out of each Matlab process was physically in the
internal memory and the other memory allocations
(except of the shared allocation) of the Matlab
processes were in the swap area. We preferred no
to reshow the results that are almost the same as
Figure 2a and 2b and instead to show in the next
figures different benchmarks results.

Figure 3aand Figure 3b show the performance
of the medium-term scheduler vs. the Linux kernel
using the tests of SPEC cpu2000 benchmarks. The
prefix 3 (or 2) before the test name indicates that
we iterated the test 3 (or 2) times. Sometimes we
divided the numbers by some constants in order
to fit the data to the scale of the diagram. These

128

constants are denoted as Test/Constant. When
we used more than one test, we added a ‘+’ sign
between the names of the tests.

When each group contains just a few memory-
consuming processes, the idle task might be
invoked too often, even though there are other
processes in other groups that can be executed.
This can reduce the time saved by eliminating the
thrashing effect. When a test has large memory
allocations and is executed in a different group,
the results will not as good as when executing
several smaller SPEC tests concurrently in one
group. A higher idle time will be emerged when
the content of each group is just one process; thus
the results of Figures 3a and 3b are not as good

Alleviating the Thrashing by Adding Medium-Term Scheduler

Figure 4. a. Time Slice’s Effect on Number of Swaps; b. Time Slice’s Effect on Execution Time

swaps (millions)

9
48 3>

AP rg'? ..5@

(a)

Time (hours)
(=1
[

A npﬁ@ 6@"&

¢ ¢

Test name

(b)

as the results of Figures 2a and 2b. However,
the elimination of the thrashing saved more time
than was wasted idling, and the medium-term
scheduler still outperforms the traditional Linux
scheduler.

Figure 4a and Figure 4b show the effect of the
medium-term scheduler time slice on the process’
execution time. The tests were conducted using
SPEC. It can be seen that when the time slice
exceeds a certain limit, the execution time might
suffer. This damage is caused by the higher av-
erage idle time. When the number of processes
per group is too small, it may happen that none
of the processes in the current group is on the
Ready queue. Such a case may happen due to
many 1/O operations. Clearly, this might turn out

8

7

6

i @ 1/2 second
3 W 1 second
: Jj__l

1

o =

d“g} 2

@Q‘@‘&f@ﬁ

Test name

@ 1/2 second
W1 second

with a lower group time slice as well, but it will
not happen as often as with a higher time slice,
because at the beginning of the time slice all the
processes are usually ready to run and not wait-
ing for an I/0.

When the time slice is higher, the cycle will be
longer. An extremely high time slice will actually
make the medium-term scheduler behave like
a FIFO scheduler. On the other hand, the page
faults rate is lower for the one-second scheduler,
because of the longer time slice. Pages are usually
swapped out when the group context is switched,
so if all the pages are replaced on context switch,
the half-a-second scheduler should have double
number of pages faults comparing to the one-
second scheduler. However, sometimes the bins

129

Alleviating the Thrashing by Adding Medium-Term Scheduler

Figure 5. Execution Time as a Function of Processes’ Total Size

1.5 T
hd 1]
g & =
7! N
g u + 2 seconds
£ *
Y] # ¥ 1second
E i
i 05 -
5
a = &
DT
16 32 48 64 80 96 112 128

processes' total size

are not full, and some shared memory can be
present, so the ratio between the number of page
faults is actually less than two.

Figure 5 shows the same time slices but with
more processes. This testwas conducted using the
synthetic benchmark SYNS8. It can be clearly seen
that the effect of increasing time slice damages
the execution time when processes for more than
one bin are present.

The Bin Packing Approximations

There are more than a few approximations for
the Bin-Packing optimal solution. Some of them
have been mentioned in section 3. Figure 6a and
Figure 6b compare two of these approximations.
The First-Fit Approximation (Also known as the
greedy approximation) isdescribed insection4.1.
The Best-FitApproximation finds for each process
the most unfilled bin and put the process in it.
When there is almost no shared memory, the
performance of both of the methods will be almost
the same. However, when a significant amount
of shared memory is allocated, the First-Fit ap-
proach outperforms the Best-Fit approach. The
benchmark that was used in Figures 6a and 6b is
SYNSHARED. Figure 6a compares the number

130

of swaps using each of the methods. First Fit sorts
the processesaccording to their shared size; hence
usually processes that share a portion of memory
will be in the same group. As was explained in
section 4.3 processes that share memory typi-
cally have the same number of shared pages. As
a result, they will be in adjacent positions in the
sorted list and probably will be put in the same
group. Therefore, less page faults will occur.
Best-Fit cannot guarantee this quality; hence, the
performance will not be as good as the First-Fit
performance. The higher number of page faults
causes a longer execution time as can be seen in
Figure 6b.

Priority Implementation Evaluation

The priority can be implemented by another ap-
proximation which first determines how many
bins should be. Next, it sorts the processes by
their priority and finally, it fills the bins in a
Round-Robin manner. This method can scatter
the higher priority processes (and the lower
priority processes) among the bins, more or less
equally. However, the shared memory handling
requires a sorting by the shared size; hence, if
there are many processes with shared memory

Alleviating the Thrashing by Adding Medium-Term Scheduler

Figure 6. a. Number of swaps using best fit or first fit; b. Execution time using best fit or first fit

1250

¥ 1000
=
&
g 750 4 First Fit
= 500 —e— Best Fit
-
g 250
16 32 48 64 80 12 128 144 160
20 40 60 80 100 140 160 180 200
Processes' total size
(a)
5
4
?
g8 & First Fit
gz —e— Best Fit
=
1

16 32 48 64 80
20 40 60 80 100

112 128 144 160
140 160 180 200

Processes’ total size

(b)

allocations, this approach can lengthen the ex-
ecution time.

Another approach implements the priority by
dynamically changing the time slice according
to the average priority of the processes in the
group. This approach sorts the processes by
their shared memory sizes and builds bins us-
ing a First-Fit version that has been introduced
above. Actually, this approach performs the
same procedure of building the bins, but each
group gets a dynamically different time slice,
according to the average priority of the group.
The medium-term scheduler calculates the global
average priority of all the processes currently
run and the average priority of the processes in
each group. Next, it calculates the difference

between the average of each group and the global
average. Let us denote this vector of differences
as D and the global average priorities of all the
processes as P. Then, the medium-term scheduler
gives each group (D[i]+P)/P*TS where TS is
the default group time slice and i is the index
the group.

Figure 7 shows the differences between the
approaches. We used the SPEC benchmark. We
took in each test one process and we awarded it
the highest priority: -20. We always took another
process and demoted its priority to the lowest
one: 19. The tests are written on the X-axis.
The promoted test is written below. We did not
change any other process’ priority. The default
group slice time was one second.

131

Alleviating the Thrashing by Adding Medium-Term Scheduler

Figure 7. Different Sorting Strategies of the Medium Term Scheduler

%]

;E‘; 1.5
g '1 @ Sort by shared mem
E 05 B Sort by priority
- s I
& e" &
& & e -Q"’Sh
& s éﬁe
o xR
Vv &'1-
i
gcc 2perbmk 2bap2 gap

Test name

The differences between the two strategies can
be clearly shown when using the SYNSHARED
benchmark. Because of the massive use of shared
memory, the sorting by shared memory strategy
will dramatically outperform the sorting by prior-
ity strategy. The results of the SYNSHARED are
shown in Figures 8a and 8b. Figure 8a shows the
influence of the strategies on the number of swaps.
Thisis quite adramatic difference. The difference
of the execution time is notable as well.

Interactive and Real Time
Implementation Evaluation

The interactive and real time processes were
checked using the Xine movie player. It is a well-
known MPEG player on Linux machines. We
configured Xine to play ashort video clipinaloop.
The memory needs of Xine are much lower than
the physical RAM we had in our machine. Inorder
to check that Xine will continue to respond even
when the memory is overloaded, we deliberately
overfilled the memory by executing many copies
of SYNS8. The results of this test can be found in
Figure 9. When the movie player process is not
handled as an interactive process, many frames
are lost. When Xine’s bin is not active, no CPU
time is given and no frames can be displayed.
Even when a CPU time is given, if the slice is

132

reduced because of the overall load, sometimes
the given slice is not enough and just when the
process is handled as a real-time process, a good
result can be achieved. We also reniced Xine by
-20. This yielded interesting results. The results
were better than the interactive mode, because
interactive processes’ time slice is reduced when
there are too many bins, whereas the reductions
of the time slice of bins include a high priority
process is smaller. On the other hand, a high pri-
ority process does not have the privileges Linux
gives to real-time processes, so the results are
worse than real-time mode.

CONCLUSION

The scheduling approach of the new proposed
scheduler is built on the simple concept of adding
another layer of scheduling. The experimental
results are promising. Given a high memory pres-
sure caused by some processes, the medium-term
scheduler will be able to significantly reduce the
thrashing overhead. In addition, no performance
reduction has been generated when the memory
load is low and no swapping is needed. The
medium-term scheduler has been written as a
kernel patch; therefore it can be easily installed
on any Linux machine. If a user decides to install

Alleviating the Thrashing by Adding Medium-Term Scheduler

Figure 8. a. SYNSHARED’s number of swaps with different sorting methods; b. SYNSHARED’s Execu-
tion time with different sorting methods

1200
g 1000
< 800
3 #— Sort by shared mem

600 e
= —&— Sort by priority
2 400
% 200
0
48 64 80 96 112 128 144 160
60 80 100 120 140 160 180 200
Processes’ total size
(a)

5

4
£
E 3 —&— Sort by shared mem
E 2 —e— Sort by priority
E

1

0

48 64 80 96 112 128 144 160
60 80 100 120 140 160 180 200

Processes’ total size

(b)

Figure 9. Frame loss as function of the number of bins

90
80 = 3
I3 s e
*
70 R 2 e
= 22 >4 o
$ 60 Bregular
= o 4 > 4 rod
s % 4 22 rod . :
2 50 e 4 1 H4 Binteractive
; bad b4 b4 rod
pe +* 4 >4 i
E 40 * e zz 2 ree Qreniced
a4 P4 &4 rd 2
< 30 + + Wreal-time
-0 o ¢ v 9 o —
-0 +4 22
20 + 4] 2 i 4
+ 4] = —]
* -+ —
10 P 22 =
b ¢ 22 =
0 — :
1 2 3 4 5
no. of bins

133

Alleviating the Thrashing by Adding Medium-Term Scheduler

this patch, the patch can help the machine han-
dling a massive paging in a thrashing situation in
amore tolerant means than the traditional way of
Linux that was killing processes. Moreover, the
responsiveness of the machine keeps being reason-
able for heavier memory load. The medium-term
scheduler does not require special resources or
extensive needs; therefore, it can be easily adapted
by almost any Linux machines. Furthermore,
there is no prevention from implementing the
medium-term scheduler on a parallel machine
or a cluster; hence, heavy load projects like the
Human Genome Project can benefit from the new
scheduling strategic.

In the future, we would like to find a pattern
for memory usage reoccurrence. Such a pattern
can improve the efficiency of the scheduling
decisions. Some applications like (Wiseman
et al., 2004), (Wiseman, 2001), (Wiseman and
Klein, 2003) have a pattern of memory usage
reoccurrence and the Operating System can take
an advantage of it.

REFERENCES

Abrossimov, V., Rozier, M., & Shapiro, M. (1989).
Virtual Memory Management for Operating
System Kernels. In Proceedings of the 12" ACM
Symposium on Operating Systems Principles,
Litchfield Park, AZ, December 3-6, (pp. 123-126).
New-York: ACM SIGOPS.

Albers, S., & Mitzenmacher, M. (2000).
Average-Case Analyses of First Fit and Ran-
dom Fit Bin Packing. Random Structures
Alg., 16, 240-259. doi:10.1002/(SICI)1098-
2418(200005)16:3<240::AID-RSA2>3.0.CO;2-
\

134

Alverson, G., Kahan, S., Korry, R., McCann,
C., & Smith, B. (1995). Scheduling on the Tera
MTA. In Proceedings of the 1st Workshop on Job
Scheduling Strategies for Parallel Processing,
In Conjunction with IPPS “95 Fess Parker’s Red
Lion Resort, Santa Barbara, California, April 25,
(pp. 19-44). Berlin: Springer-Verlag.

Batat, A., & Feitelson, D. G. (2000). Gang schedul-
ing with memory considerations. In Proceedings
of the 14th International Parallel and Distributed
Processing Symposium (IPDPS’2000), Cancun,
Mexico, May 1-5, (pp. 109-114). Los Alamitos,
CA: IEEE.

Beck, M., Bohme, H., Dziadzka, M., Kunitz,
U., Magnus, R., & Verworner, D. (1998). Linux
Kernel Internals (2nd Ed.). Harlow, MA: Addison
Wesley, Longman

Belady, L. A. (1966). A Study of Replacement
Algorithms for Virtual Storage Computers. IBM
Systems Journal, 5(2), 78-101.

Benchmark, B. E. N. C. H-M. A. T. L. A. B.
(2004). Matlab Performance Tests. Natick, MA:
The MathWorks, Inc. Retrieved from http://www.
mathworks.com/

Bovet, D., & Cesati, M. (2003). Undersatnding
the Linux Kernel, (2nd Ed.). Sebastopol, CA:
O’Reilly Press.

Card,R.,Dumas, E., & Mevel, F. (1998). The Linux
Kernel Book. New York: John Wiley & Sons.

Chu,Y., &Ito, M. R. (2000). The 2-way Thrashing-
Avoidance Cache (TAC): An Efficient Instruction
Cache Scheme for Object-Oriented Languages. In
Proceedings of 17th IEEE International Confer-
ence on Computer Design (ICCD2000), Austin,
Texas, September 17-20, (pp. 93-98). Los Alami-
tos, CA: IEEE.

Alleviating the Thrashing by Adding Medium-Term Scheduler

Coffman, E. G., Jr., Garey, M. R., & Johnson,
D. S. (1997). Approximation Algorithms for Bin
Packing: A Survey. In D. Hochbaum (ed.), Ap-
proximation Algorithms for NP-Hard Problems,
(pp. 46-93). Boston: PWS Publishing.

Denning, P. (1970). Virtual Memory. [CSUR].
ACM Computing Surveys, 2(3), 153-189.
d0i:10.1145/356571.356573

Etsion, Y., Tsafrir, D., & Feitelson, D. G. (2004).
Desktop Scheduling: How Can We Know What
the User Wants? In Proceedings of the 14th ACM
International Workshop on Network & Operat-
ing Systems Support for Digital Audio & Video
(NOSSDAV’2004), Cork, Ireland, June 16-18, (pp.
110-115). New York: ACM.

Fekete, S. P., & Schepers, J. (2001). New Classes
of Fast Lower Bounds for Bin Packing Problems.
Mathematical Programming, 91(1), 11-31.

Galvin,P.B., & Silberschatz, A. (1998). Operating
System Concepts (6" Ed.). Harlow, MA: Addison
Wesley Longman.

Gent, I. (1998). Heuristic Solution of Open Bin
Packing Problems. Journal of Heuristics, 3,
299-304. doi:10.1023/A:1009678411503

Gonzalez,A., Valero, M., Topham, N., & Parcerisa,
J. M. (1997). Eliminating Cache Conflict Misses
through XOR-Based Placement Functions. In
Proceedings of the International Conference on
Supercomputing, Vienna, Austria, July 7-11, (pp.
76-83). New-York: ACM.

Gorman, M. (2004). Understanding The Linux
Virtual Memory Management (Bruce Peren’s
Open Book Series).

Jiang, S., & Zhang, X. (2001). Adaptive Page
Replacement to Protect Thrashing in Linux. In
Proceedings of the 5" USENIX Annual Linux
Showcase and Conference, (ALS’01), Oakland,
California, November5-10, (pp. 143-151). Berke-
ley, CA: USENIX.

Jiang, S., & Zhang, X. (2002). TPF: a System
Thrashing Protection Facility. Software, Practice
& Experience, 32(3), 295-318. doi:10.1002/
spe.437

Jiang, S., & Zhang, X. (2005). Token-ordered
LRU: An Effective Page Replacement Policy
and Implementation in Linux systems. Perfor-
mance Evaluation, 60(1-4), 5-29. doi:10.1016/j.
peva.2004.10.002

Karp, R. M. (1972). Reducibility Among Combi-
natorial Problems. InR.E. Miller & J.M. Thatcher,
(Eds.) Complexity of Computer Computations,
(pp. 85-103). New York: Plenum Press.

Klein, S. T., & Wiseman, Y. (2003). Parallel
Huffman Decoding with Applications to JPEG
Files. The Computer Journal, 46(5), 487-497.
doi:10.1093/comjnl/46.5.487

Komarinski, M. F., & Collett, C. (1998). Linux
System Administration Handbook. Upper Saddle
River, NJ: Prentice Hall.

Manber, U. (1989). Introductionto Algorithms—A
Creative Approach, (pp.130-131). Harlow, MA:
Addison-Wesley.

Martello, S., & Toth, P. (1990). Lower Bounds and
Reduction Procedures for the Bin Packing Prob-
lem. Discrete Applied Mathematics, 28, 59-70.
doi:10.1016/0166-218X(90)90094-S

Marti, D. (2002). System Development Jump Start
Class. Linux Journal, 7.

Nikolopoulos, D. S. (2003). Malleable Memory
Mapping: User-Level Control of Memory Bounds
for Effective Program Adaptation. In Proceedings
ofthe 17th International Parallel and Distributed
Processing Symposium (IPDPS’2003), Nice,
France, April 22-26, [CD-ROM)]. Los Alamitos,
CA: IEEE.

135

Alleviating the Thrashing by Adding Medium-Term Scheduler

Reuven, M., & Wiseman, Y. (2005). Reducing
the Thrashing Effect Using Bin Packing, Proc.
IASTED Modeling, Simulation, and Optimiza-
tion Conference, MSO-2005, Oranjestad, Aruba,

(pp. 5-10).

Reuven, M., & Wiseman, Y. (2006). Medium-
Term Scheduler as a Solution for the Thrashing
Effect. The Computer Journal, 49(3), 297-3009.
doi:10.1093/comjnl/bx1001

Scholl, A., Klein, R., & Jurgens, C. (1997). BI-
SON: A Fast Hybrid Procedure for Exactly Solv-
ing the One-Dimensional Bin Packing Problem.
Computers & Operations Research, 24,627-645.
doi:10.1016/S0305-0548(96)00082-2

SPEC. (2000). CPU-2000. Standard Perfor-
mance Evaluation Corporation, Warrenton, VA.
Retrieved from http://www.spec.org/

Stallings, W. (1998). Operating Systems Internals
and Design Principles, (3 Ed., p. 383). Upper
Saddle River, NJ: Prentice-Hall.

Vahalia, U. (1996). UNIX Internals: The New
Frontiers (pp. 112-148). Upper Saddle River,
NJ: Prentice Hall.

136

Wiseman, Y. (2001). A Pipeline Chip for Quasi
Arithmetic Coding. IEICE Journal - Trans. Fun-
damentals, Tokyo, Japan . E (Norwalk, Conn.),
84-A(4), 1034-1041.

Wiseman, Y., & Feitelson, D. G. (2003). Paired
Gang Scheduling. IEEE Transactions on Paral-
lel and Distributed Systems, 14(6), 581-592.
doi:10.1109/TPDS.2003.1206505

Wiseman, Y., Schwan, K., & Widener, P. (2004).
Efficient End to End Data Exchange Using Con-
figurable Compression. In Proc. The 24th IEEE
Conference on Distributed Computing Systems
(ICDCS 2004), Tokyo, Japan, (pp. 228-235).

Zahorjan, J., Lazowsk, E., & Eager, D. (1991).
The Effect of Scheduling Discipline on Spin
Overhead in Shared Memory Multiprocessors.
IEEE Transactions on Parallel and Distributed
Systems, 2(2), 180-198. doi:10.1109/71.89064

Zhou, P., Pandey, V., Sundaresan, J., Raghura-
man, A., Zhou, Y., & Kumar, S. (2004). Dynami-
cally Tracking Miss-Ratio-Curve for Memory
Management. In Proceedings of the Eleventh
International Conference on Architectural Sup-
port for Programming Languages and Operating
Systems (ASPLOS’04), Boston, MA, October 7-13,
(pp.177-188). New York: ACM.

Section 3

Systems Profiling

138

Chapter 8

The Exokernel Operating
System and Active Networks

Timothy R. Leschke
University of Maryland, Baltimore County, USA

ABSTRACT

There are two forces that are demanding a change in the traditional design of operating systems. One
force requires a more flexible operating system that can accommodate the evolving requirements of new
hardware and new user applications. The other force requires an operating system that is fast enough
to keep pace with faster hardware and faster communication speeds. If a radical change in operating
system design is not implemented soon, the traditional operating system will become the performance
bottle-neck for computers in the very near future. The Exokernel Operating System, developed at the
Massachusetts Institute of Technology, is an operating system that meets the needs of increased speed and
increased flexibility. The Exokernel is extensible, which means that it is easily modified. The Exokernel
can be easily modified to meet the requirements of the latest hardware or user applications. Ease in
modification also means the Exokernel’s performance can be optimized to meet the speed requirements
of faster hardware and faster communication. In this chapter, the author explores some details of the
Exokernel Operating System. He also explores Active Networking, which is a technology that exploits the
extensibility of the Exokernel. His investigation reveals the strengths of the Exokernel as well as some
of its design concerns. He concludes his discussion by embracing the Exokernel Operating System and
by encouraging more research into this approach to operating system design.

INTRODUCTION resources. As a manager, the OS controls how
resources such as I/O devices, file-storage space,
The traditional operating system (OS) is seen as memory space, and CPU time get allocated. As a
providing both management and protection of protector, thetraditional OS controls how processes
use these resources to avoid errors. Because the
DOI" 10.4018/978-1-60566-850-5.ch008 operating system’s role is so important, it is the one

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of 1GI Global is prohibited.

The Exokernel Operating System and Active Networks

program that is always running on a computer.
The heart of the operating system is called the
kernel.

Within a traditional computer system, the
complexity of the hardware is masked behind the
abstractions provided by the operating system.
Although this abstraction prevents user programs
from interacting with the hardware directly, user
programs benefit by having a single interface
that they can interact with. It is easier for a user
program to interact with one operating system
interface rather than developing software that
must know how to interact with the different
hardware components that could be presentwithin
a computer system at any one time. Because the
operating system is the main interface between
user programs and the raw hardware, the tradi-
tional operating system must be involved in every
software-hardware interaction.

Although the traditional operating system is
desirable because it provides a single interface
for other software to interact with, itis ironic that
this efficient interface should be the root cause
of the modern computer system’s performance
bottleneck. By presenting a single interface to
user applications, the traditional operating system
is the middle-man between all user processes and
the computer hardware. By being the middle-man,
the operating system tries to be all-things to all-
processes. This “all-things to all-processes” ap-
proachis precisely why the design of the traditional
operating system is flawed. So long as the operat-
ing system is designed to meet the minimum of a
broad spectrum of operational requirements, the
optimization of any one process is very unlikely.
Therefore, while every application might run on
a traditional operating system, few applications
run well (reaches it maximum performance level)
on a traditional operating system.

A team of researchers at the Massachusetts
Institute of Technology (MIT) has challenged
the traditional operating system design with their
experimental operating system - the Exokernel Op-
erating System. Their new approach is to separate

management of resources from the protection of
those resources. The Exokernel Operating System
provides only protection and multiplexing of re-
sourceswhile allowing user processes themselves
to provide the management and optimization of
that resource. As Engler, Kaashoek, and O’ Toole
say “Applications know better than operating sys-
tems what the goal of their resource management
decisions should be and therefore, they should
be given as much control as possible over those
decisions” (Engler, Kaashoek, & O’Toole, 1995).
By separating management from protection, the
abstraction provided by the traditional operating
system has been eliminated. Likewise, the door to
process optimization has been opened and great
advances in operating system speed and flexibility
have become possible.

As we investigate the Exokernel Operating
System, we will discuss how it is possible to
separate management from protection while still
multiplexing resources within a secure environ-
ment. We will discuss select Exokernel functions
such as downloading code into the kernel, read-
ing and writing to disk memory, exception and
interrupt handling, interprocess communication,
tracking resource ownership, protecting and re-
voking resource usage, and resource management.
Networking with an Exokernel will be discussed
as we look at packet sending, packet receiving,
the naming and routing of packets, and network
error reporting. Lastly, as an example of other
technologies that benefit from the Exokernel, we
will briefly explore the emerging technology of
Active Networking and see how the Exokernel is
the ideal operating system upon which to build
this new technology.

In response to the Exokernel, we will inves-
tigate why the Exokernel has not been widely
accepted as the main-stream approach to Op-
erating System design. We will investigate the
potential issues with providing customer sup-
port to an extensible operating system like the
Exokernel. We will argue against removing all
management from the kernel. We will discuss

139

code optimization and who is best suited for this
task. We will concede that some processes - like
multithreaded applications - perform worse in an
Ekokernel environment. We will finally question
if extensibility is even the solution to the grow-
ing problem of operating systems becoming the
bottleneck of computer system performance. We
will conclude that despite some of the issues that
make the Exokernel commercially unacceptable at
thistime, the Exokernel’senhancements outweigh
its shortcomings and therefore we encourage the
reader to embrace its approach.

PROBLEM DESCRIPTION

The need for a new operating system design has
been motivated by two forces - the need for speed
and the need for flexibility. These two forces are
explained next.

The Need for Flexibility

Trying to define the term “operating system” isan
ongoing debate. Some say the operating system
is simply that software program that sits between
the hardware and the other user programs. It is
that program that provides a simple interface that
allows processes to interact with the hardware.
Others say the operating system is the manager
and protector of computer resources. It manages
how every computer resource gets used and also
protects the resources against improper use.
Some have argued that an operating system is
defined by the manufacturer. As was stated previ-
ously, an operating system is “whatever comes in
the box when it is purchased” (Leschke, 2004).
This means that if a user-manual is included in
the package, then the user-manual is a formal part
of the operating system. Furthermore, whatever
software is bundled-with or integrated-with the
operating system is also a part of the operating
system. For example, if a text editor or an entire
suite of office application software is integrated

140

The Exokernel Operating System and Active Networks

into the operating system, then these items must
also be considered to be part of the definition of
an operating system.

Regardless of which definition of an operating
system you agree with, we must all agree that the
traditional operating system is that program that
abstracts the hardware and offers the user a single
interface with which to interact with. It is this
single interface approach that has the traditional
operating system literally caught in the middle
between two different forces. One force is the
need for a more flexible operating system. As 64
bit processors replace 32 bit processors, the need
for an operating system that can interact with this
new hardware has grown. Larger memory de-
vices - such as hard drives that are now measured
in terrabytes - as well as fiber-optic networks,
high-bandwidth networks, and new data storage
devices, have also demanded a more flexible
operating system.

In addition to the flexibility demands being
made by hardware, software applications are also
demanding a more flexible operating system to
meet their needs. For example, realistic gaming
programs are requiring access to hardware in
non-traditional ways. Portable computing and
communication devicesare requiring the ability to
up-load and down-load datamore easily. Database
systems want to be able to access memory in their
own ways, and real-time systems demand a spe-
cific performance level that can be best achieved
through a flexible operating system. All of these
have combined into one force that is demanding
the traditional operating system become more
flexible to change.

The traditional operating system could be
pulled-apart by these forces if it continues to re-
main rigid in its design. Therefore, the traditional
operating system needs a more flexible design.

The Need for Speed

Gene Amdahl has provided us with “Amdahl’s
Law” - one of the fundamental laws of computer

The Exokernel Operating System and Active Networks

architecture. His law states that the increased
speed that is gained by using an improved mode
of execution is restricted by how much the new
mode is actually used. For example, if an execu-
tion mode that is used 10% of the time is modi-
fied to be 100% faster, the entire efficiency of the
system will only increase by about 5%. On the
other hand, if a mode of execution that is used
90% of the time is modified to be 50% faster than
it was before, the entire system will experience
a 45% increase in efficiency. This means that a
small improvement in a mode of execution that
is used frequently will have a much larger impact
on performance than a large improvement made
in a mode of execution that is seldom used. If
one wants to have the greatest impact on the ef-
ficiency of a system, one should try to improve
those processes that account for the greatest share
of the execution time. This means designers of
computer systems must pay attention to changes
in technology, identify those technologies that
have had the greatest speed-up, and then make
sure the old technologies that the new technology
has to interact with do not impede the speed-up
gained by the new technology.

As an example, the Central Processing Unit
(CPU) is one of those technologies that enjoyed
some great improvement in the recent past.
Although the speed and capacity of the newest
CPUs - as well as other key hardware compo-
nents - have been increasing, if the rest of the
computer system cannot keep pace with this
increase, then the full benefit of the increase will
not be realized. Just like the CPU, another part of
the computer system that might not be keeping
pace with the ever increasing speeds of hardware
isthe Operating System. As Engler, Kaashoek, and
O’Toole explain, “Traditional operating systems
limit the performance, flexibility, and function-
ality of applications by fixing the interface and
implementation of operating system abstractions
such as interprocess communication and virtual
memory” (Engler, Kaashoek, & O’Toole, 1995).
Furthermore, asanother example, John Ousterhout

states “Operating systems derived from UNIX
use caches to speed up reads, but they require
synchronous disk 1/0 of operations that modify
files. If this coupling isn’t eliminated, a large
class of file-intensive programs will receive little
or no benefit form faster hardware” (Ousterhout,
1989). The new era of operating system design
demands that operating systems keep pace with
faster hardware or risk being the cause of computer
system speeds being stagnant.

The Approach

As Lee Carver and others state, an operating
system is a necessary evil (Carver, Chen, &
Reyes, 1998). Therefore, computers will have
an operating system of one sort or another. The
growing requirements that operating systems
become faster and more flexible have encouraged
many researchers to consider operating systems
with radical designs. One of the new designs is
an extensible operating system.

An extensible operating system is simply an
operating system that is flexible to change. The
needs of the underlying hardware can be better
met by an operating system that can be easily
modified. The needs of the user applications can
also be better met by an operating system that
can be easily modified. Speed is achieved by an
extensible operating system because the system
can be easily changed and optimized. The speed
and flexibility issue are both addressed by an
extensible operating system. By providing the
hope of increased speed and amore flexible imple-
mentation, the approach offered by an extensible
operating system, at least momentarily, seems
to be one way to prevent the increased speed of
computer systems from becoming stagnant while
also addressing the rapidly changing needs of
user applications.

A group of researchers at the Massachusetts
Institute of Technology have implemented their
version of the extensible operating system in what
they have called the Exokernel Operating System.

141

The main approach of the Exokernel is to attempt
avery clear separation between management and
protection of resources. Management is left to the
user processes - because user processes them-
selves know how to better utilize the resources
under their control. Protection of the resources is
provided by the Exokernel, but in a very minimal
amount so as not to interfere with any attempts to
optimize the user processes. The end result is an
operating system that is easily modified to meet
the changing needs of user processes while also
allowing real optimizations to occur - which result
in major speed-ups in process execution times.
We will be taking a closer look at the separation
of management from protection as we investigate
the Exokernel Operating System.

THE EXOKERNEL SOLUTION

Previously we stated the Exokernel only provides
protection and proper sharing of resources. Ac-
cording to Dawson Engler, the process of pro-
tecting resources consists of three major tasks;
1) tracking ownership of resources, 2) ensuring
protection by guarding all resource usage or bind-
ing points, and 3) revoking access to resources
(Engler, 1998). Lesser tasks of the Exokernel
include; protecting a processes ability to execute
privileged instructions, protecting the processing
ofthe central processing unit, and protecting physi-
cal memory - which includes writes to “special”
memory locations that are used by devices, and
protection of network devices. We stress that
while the Exokernel is providing protection of
these activities, it is not getting involved in the
micro-management of these activities. The micro-
management of these activities is provided by
user-processes thatare located in user-space rather
than kernel space. In other words, the Exokernel
will grant a user-process access to a resource, and
it might revoke that access if necessary, however,
it does not regulate how the resource is used. This
means that a user-process could use a resource

142

The Exokernel Operating System and Active Networks

improperly if it wanted to, but it also means the
user-process has the freedom to optimize how the
resource is utilized. This added freedom means
software engineers need to develop computer
programs that police themselves to ensure that
the shared resources provided by an Exokernel
are used properly.

Dawson Engler provides a better example of
the separation of management from protection
as he explains how the Exokernel protects physi-
cal memory. The accessing of physical memory
through read and write requests are privileged
instructions for atraditional operating system. The
traditional kernel stands guard over the memory
and verifiesevery read/write request to ensure each
request has the proper access rights. Because the
traditional operating system stands between the
user-processes and the physical hardware, when
a user-process wants to send a message to the
hardware, it passes the message to the traditional
operating system and the operating system then
passes the message to the hardware on behalf of
the user process. When a user-process passes a
message to the operating system in this manner, it
is called a system-call. One of the down-sides of
the traditional system-call is that user-processes
cannot directly execute privileged instructions.
Because the traditional operating system is the
constant middle-man that gets involved in every
system-call, the overall efficiency within the entire
computer system is greatly reduced.

In response to the issue of reduced global ef-
ficiency, Dawson Engler explainsthatthe Exoker-
nel’s solution is “to make traditionally privileged
code unprivileged by limiting the duties of the
kernel to just these required for protection” (En-
gler, 1998). This means that the Exokernel allows
user-processes to have much more directaccess to
memory. The Exokernel still getsinvolved allittle,
but only enough to ensure the memory access is
“safe”. Once safety is guaranteed, a user-process
is allowed to directly access the hardware itself.

In the next pages, we continue to illuminate
some of the unique aspects of the Exokernel Oper-

The Exokernel Operating System and Active Networks

ating System. The aspects that we have chosen to
look at are by no means a comprehensive list, but
they are intended to leave the reader with a good
understanding of the Exokernel’s approach.

Tracking Ownership of Resources

The allocation of a resource is actually accom-
plished by what the research group calls the Li-
brary Operating System (LibOS). This LibOS is
outside of the kernel; therefore the kernel is only
minimally involved. The kernel gets involved
just enough to record the ownership information
associated with a resource. For example, when
physical memory gets allocated, the kernel keeps
track of which process the resource has been al-
located to and which processes have ‘read’ and
‘write’ permissions (Engler, 1998). As a way to
retain its minimal involvement, the Exokernel
records resource allocations in what the research
group calls an open bookkeeping policy. Through
this open bookkeeping policy, as Engler explains,
resource allocation records are made available to
all user processes in read-only mode. This allows
the user processes to look-up for themselves if the
resource that they want is actually available. This
means the kernel does not need to be interrupted
by a process that keeps requesting a resource that
is currently unavailable.

Ensuring Protection by Guarding all
Resource Usage or Binding Points

It is very important for a process to retain use of
aresource until it is done using it. For example, a
process should be able to securely use a block of
memory until the process decides to de-allocate
it. The Exokernel uses what are called “secure-
bindings” when binding a resource to a process.

Asecure-binding separates the authorizationto
use aresource from the actual use of that resource.
Authorization to use a resource is granted or de-
nied when the resource is first requested. Once
the process has the authority to use a resource, it

retains this authority until it gives it up (Engler,
Kaashoek, & O’Toole, 1995). The Exokernel is
only minimally involved in this process as it only
provides the authorization to use the resource and
it does not get involved in the ongoing manage-
ment of the use of that resource.

Furthermore, the Exokernel can provide
secure-bindings without any special knowledge
of what it is binding. The semantics of binding
a resource to application software can get very
complex. However, the Exokernel does not get
involved in the details of the binding. It only
gets involved to the extent that it can provide the
security associated with that binding. As Engler,
Kaashoek, and O’Toole say, “a secure binding
allows the kernel to protect resources without
understanding them” (Engler, Kaashoek, &
O’Toole, 1995).

Revoking Access to Resources

Although a secure-binding, in theory, allows a
process to use a resource until it is done with
it - in reality, there still must be a way for the
operating system to force a revocation of the
resource binding under certain conditions. Un-
like the Exokernel, when a traditional operating
system brakes a resource binding it does so by
what is known as invisible revocation. With an
invisible revocation, the resource binding is simply
broken and the process has no knowledge of the
circumstances that prompted the revocation. A
disadvantage of using invisible revocation is that
operating systems “cannot guide de-allocation
and have no knowledge that resources are scarce”
(Engler, Kaashoek, & O’Toole, 1995).

When an Exokernel breaks a secure bind-
ing, it uses a technique that the researchers have
named visible revocation. With visible revoca-
tion, communication occurs between the kernel
and the process. Because of this communication,
the process is informed of the need to have the
resource binding broken. By being warned of the
resource revocation before the event, the process

143

can prepare for it by saving any data that it needs
and bring itself to a stable state. For example, a
process may be asked to give up apage of memory
and it may not matter which page of memory it
de-allocates. Because the processis keptinformed
of the resource de-allocation, the process may be
allowed to simply change a few pointersto reflect
the change, or it may be allowed to choose which
page of memory it gives up. It may also choose to
write that page of memory to disk to free-up the
memory requested by the kernel. In either case,
the process cooperates with the kernel, and by
doing so, the revocation of the resource is less
intrusive for the process.

Just like in a traditional operating system, a
process that is not cooperating with the kernel’s
request to de-allocate a resource must, on occa-
sion, be forced to comply with the kernel’s request.
When a secure-binding has to be broken by force,
it “simply breaks all existing secure bindings to
the resource and informsthe Library OS” (Engler,
Kaashoek, & O’Toole, 1995).

Management by User Level Library

Previously we stated, the Exokernel Operating
System’s kernel is responsible for providing
protection of resources while the management of
those resources is left up to another entity. This
other entity is known as the “user level library
operating system”, or “LibOS” for short. This
LibOS lies outside the kernel where it is available
to user processes.

The LibOS can be thought of as being very
similar to atraditional operating system inthat the
LibOS is the middle-man between the user pro-
cessesand theactual hardware. Like the traditional
operating system, the LibOS provides the abstrac-
tion that user processes interact with when they
wantto communicate with the hardware. However,
unlike a traditional operating system, a LibOS
can be customized to fit the needs of the software
applications. This customization leads directly to
optimization, which in turn leads to a much more

144

The Exokernel Operating System and Active Networks

efficient operating system. Furthermore, since a
LibOS is written with a specific user process in
mind, a LibOS does not have to be all-things to
all-processes as we stated was true of a traditional
operating system. ALibOS can be simpleand more
specialized, primarily because “library operating
systems need not multiplex a resource among
competing applications with widely different
demands” (Engler, Kaashoek, & O’Toole, 1995).
So far as the LibOSs use standardized interfaces,
these LibOSs allow for applications to be easily
ported to different computing hardware. Because
the LibOSs are so specialized, one may wonder
if this leads to a lot of extra code in user space.
One may also wonder if some of this code is also
redundant. The Exokernel addresses this concern
by what the researchers call “shared libraries”.

Shared Libraries

Not all of the user level libraries have to be spe-
cialized code that is written for a specific process.
Different processes can often reuse the same code
that is written for another process. Therefore,
the Exokernel allows processes to share code in
what it calls a shared library. By sharing code, the
amount of disk-space and memory-usage can be
significantly reduced. The disadvantage of sharing
code with a LibOS is what Douglas Wyatt calls
a “bootstrapping problem” (Wyatt, 1997). The
problem is that the code that is needed to load the
LibOS from disk into memory is actually found
in the LibOS itself (which cannot be accessed
until the LibOS is actually loaded into memory).
The solution to the bootstrapping issue will be
explained when we discuss the shared library
server (section 3.7).

Another of the key issues that Douglas Wyatt
has identified with a shared library system is what
he calls “symbol resolution” (Wyatt, 1997). The
issue arises from the fact that when a program is
run for the first time, it needs to know particular
memory addresses in order to run correctly. One
way to address this problem is to load a shared

The Exokernel Operating System and Active Networks

library into the same virtual address space so that
the particular memory addresses will be known
prior to program execution. Although this ap-
proach works, it is not the best approach to this
iSsue.

The symbol resolution issue might be better
solved by what Wyatt calls an “indirection table”
(Wyatt, 1997). Rather than force a shared library
to always be loaded into the same virtual memory
space, the solution requires a table be used to
record the required memory addresses. This table
is then provided to each shared library which uses
the data within the table to calculate the relative
offset of the memory address that it is looking
for. Using an indirection table allows the shared
libraries enough flexibility to load themselves
into any address space.

Implementing a Shared Library

Before a program loads a shared library, it checks
the indirection table to see if the library is already
loaded somewhere else. Ifitis loaded somewhere
else, it simply updates its page table to include
the location of the existing library. However, if
a program checks the indirection table and does
not find a reference to the library that it needs, it
loads the library and updates the indirection table
to reflect the change.

Using an indirection table solves the symbol
resolution issue described by Wyatt, but it does
come at a price. The price is the extra time that
is now needed to check the indirection table for
libraries that are already loaded. When one con-
siders the benefits of using an indirection table,
one can see that using an indirection table is an
expense that pays for itself. One of the benefits of
an indirection table is that it requires the system
to use less memory, which translates into having
fewer page faults. Fewer memory page faults mean
programs can run faster. Shared libraries can be
updated and improved, which makes the system
more flexible to change. Furthermore, when a
shared library is changed, it can be compiled

independently of the other programs that interact
with it. This mechanism can be also implemented
in a multi page size environment (ltshak & Wise-
man, 2008).

The Shared Library Server

The bootstrapping problem mentioned previously
is an issue that arises from trying to load a library
operating system into memory when the code
needed to do this is actually found within the
library operating system itself. The researchers
have addressed this issue with what they have
called the “shared library server” or SLS.

The shared library server is started as soon
as the Exokernel is booted. The shared library
server is responsible for communicating with
applications that want to communicate with a
shared library. This communication includes the
ability to 1) open, read, and write files, 2) map
files from disk, 3) open and read directories, and
4) perform basic inputand output operations. This
basic functionality is just enough to help a shared
library overcome the bootstrapping problem and
load itself into memory.

Interprocess Communication (IPC)

The passing of messages between processes, or
what is known as interprocess communication
(IPC), is used so frequently within an operating
systemthatitisapotential performance bottleneck
itifisnotaccomplished efficiently. The Exokernel
accomplishes interprocess communication by
what Benjie Chen calls “protected control transfer”
(Chen, 2000). The Exokernel implements IPC by
using secure registers to pass data. Passing data
by using secure registers allows the communica-
tion to be immediate, which means the data gets
passed between the processes without any need
for the kernel to get involved. This implementa-
tion allows the Exokernel to provide protection
- in the form of a secure register. The Exokernel
keeps itself out of the management details while

145

still retaining the role of the protector of resources.
Because this form of interprocess communication
is immediate, the Exokernel enjoys a processing
speed-up.

Exceptions and Interrupts

An exception or interrupt requires a traditional
operating system to save register data to a more
secure location in order to protect and preserve
its current state of operation. The kernel also has
to respond to the exception, which requires the
exception to be decoded by the kernel and then
specific code needs to be executed to handle the
issue raised by the exception. Once the exception
has been dealt with, the kernel has to restore the
registers to their pre-exception state and start run-
ning the original program from a point where the
program counter was just prior to the exception.

An Exokernel, on the other hand, handles
exceptions and interrupts by getting less in-
volved. For example, exceptions and interrupts
that arise from hardware are handled directly by
the applications themselves. The Exokernel only
gets involved enough to save important register
information to what Engler calls an agreed upon,
user accessible, “save area” (Engler, 1998). The
Exokernel savesthe register data, loads the excep-
tion, then starts to execute at the memory address
of the code that has been written specifically to
handle the exception. This special code is under-
stood to be located in what we have been calling
the user level library.

The kernel’sjobisdone assoonasthe Library
OS takes over the handling of the exception. As
soon as the exception is handled, the original
register data is written back to the registers
from where they were stored in user-accessible
memory. The normal program execution con-
tinues from where it left off just prior to the
exception without any further assistance from
the kernel. Therefore, the kernel gets involved
just enough to provide protection of the current
state of the registers, whereas the actual manage-

146

The Exokernel Operating System and Active Networks

ment of the exception is handled in user space,
by the Library OS.

Disk I/0

Disk 1/0 — reading and writing to memory loca-
tions — is accomplished asynchronously in order
to minimize the involvement of the kernel. It is
the Exokernel’s “exodisk” that handles all read
and write requests. When an application needs
access to memory, the exodisk simply passes
the request off to the disk driver. After the read
or write request is made, the calling application
immediately regains control. Since the request
is asynchronous, the calling application has the
option of waiting for the memory request to
complete, or it can continue without waiting for
a completion response from the exodisk.

When the memory read or write request com-
pletes, the Exokernel is notified of this event by
the requesting application. However, very little
more is required of the Exokernel. The Exokernel
retains its minimal involvement by helping pass
the disk I/O request to the exodisk and allowing all
of the details of the disk 1/O request to be handled
by user-level code found in the Library OS.

Downloading Code into the Kernel

Since one of the goals of the Exokernel is to be
optimally efficient, one of the ways the Exokernel
attempts this is by downloading code into the
kernel. Downloading code into the kernel is not
unique to the Exokernel. It is a technique that
other operating systems have used as a way to
minimize the cost of a context switch.

One of the main advantages of downloading
code into the kernel is that it eliminates the need
for code to make what are called “kernel cross-
ings”, which can require an expensive context
switch (Engler, Kaashoek, & O’Toole, 1995).
Context switches are undesirable because they
can severely impede an application’s execution
speed. By eliminating kernel crossings, context

The Exokernel Operating System and Active Networks

switchesare reduced, and applications experience
faster execution speeds.

A second benefit of downloading code into
the kernel is that “the execution of downloaded
code can be readily bounded” (Engler, Kaashoek,
& O’Toole, 1995). They mean downloaded code
can be executed at times when there are just a few
microseconds of processing time available. This
processing time-slice is too small to allow for a
full context switch, so a traditional approach that
requires a context switch would normally not be
able to take advantage of such a small process-
ing time-slice. Engler has stated that being able
to process code during these small time-slices
makes the Exokernel more powerful (Engler,
1998). The Exokernel is more powerful because
it can optimize its processing of code by taking
advantage of these small time-slices and increase
the throughput of the applications. The freedom
to optimize, as we stated previously, is a key part
of being able to increase the processing speeds of
operating systems.

Packet Sending and Receiving

Networking withan Exokernel isaccomplished by
what Ganger and others have called “application-
level” networking (Ganger, Engler, Kaashoek,
Bricefio, Hunt, & Pinckney, 2002). The Exok-
ernel’s application-level networking allows an
application to interact almost directly with the
networking interface. Because the Exokernel
provides much less of an abstraction for the ap-
plication, the application-level code can provide
more of its own management. This means the
Exokernel is ina much better position to optimize
its own operations, which can lead to an over-all
higher performance level for the entire computer.
The research documents are a little vague about
the details of how networking isactually achieved,
but it is clear that a first-in-first-out (FIFO) send
queue is used. The documentation is also clear
that the Exokernel also has a way of receiving
packets and delivering them to the proper re-

ceiving application. Both of these processes are
explained next.

The Exokernel sends a packet on a network
through asystem call referenced by “send_packet”.
When this function gets called, the packet gets
added to a first-in-first-out queue and the ker-
nel’s involvement in the transmission ends at this
point. The rest of the transmission gets handled
by a network interface card or a device driver.
The Exokernel gets involved minimally, but
only to the extent that is needed to provide for a
secure networking environment. The networking
transmission management details are provided
by the device driver code, which is located in
user-space.

Packetreceiving by the Exokernelishandled a
little differently, but without much more involve-
ment by the Exokernel. According to Ganger and
others, the Exokernel receives packets by using
two major processes; packet demultiplexing and
packet buffering. Packet demultiplexing involves
deciding which application a particular packet
should be associated with. The information that
the Exokernel uses to accomplish this is actually
found within each packet which is located at a
particular memory offset value. The process of
actually delivering a packet to a particular ap-
plication is called packet buffering by Ganger
and others. Similar to the pre-arranged “save-
area” mentioned in section 3.9 (Exceptions and
Interrupts), the Exokernel copies the packet to a
pre-registered memory area. Once the packet is
successfully copied to the appropriate memory
area, the Exokernel’s involvement is complete.
From this point, any further management or
handling of the packet is accomplished by user-
level code.

Naming and Routing of Packets
When a packet’s high-level identifier gets trans-
lated into a low-level identifier, this is called

“naming”. Before a packet can be properly routed
through a network, it must first be identified by a

147

name. Therefore, naming of packets isanimportant
componentto routing packets. Naming isalso how
the Address Resolution Protocol (ARP) is able to
assignaunique identifier toeach computerwithina
network. Withoutaunique name foreach computer
on a network, it would be impossible to properly
address packets. The Exokernel supports the nam-
ing and routing of packets by what Ganger and
others call the “sharing model” (Ganger, Engler,
Kaashoek, Bricefio, Hunt, & Pinckney, 2002).
The Exokernel implements the sharing model by
publishing all of the Address Resolution Protocol
information in a translation table. Because this
translation table is made available to user code
in a read-only format, an application can look-up
the information that it requires without asking the
kernel forassistance. Whenaprocess does not find
the information thatitneeds inthe translationtable,
it can then ask the network for the information.
This is called the sharing model because all of the
applications share the translation table.

Network Error Reporting

It is important to notify the sender of a packet
when the addressee of a packet cannot be located.
According to Granger and others, the Exokernel’s
“stray packet” daemon takes care of TCP segment
errorsand network packets that cannot be delivered
tothe correctlocation (Ganger, Engler, Kaashoek,
Bricefio, Hunt, & Pinckney, 2002). Although the
exact details of how the daemon handles these
issues is unclear, it is interesting to note that the
kernel is very much involved in this service. The
researchers justify the kernel’s heavy involvement
by noting that this service is most closely related
to protection rather than management. Therefore,
the Exokernel can still be thought of as providing
mostly protection of resources and allowing the
actual management to be provided by code found
in user-space.

148

The Exokernel Operating System and Active Networks

PERFORMANCE RESULTS

Perhaps the best way to evaluate the Exokernel
is by considering its performance results. In the
following paragraphs, we will look at five areas
thatshow enhanced operating system performance
due to the Exokernel’s approach. These results
suggest the Exokernel’s extensible approach pro-
vides enough of an enhancement as to make this
approach a desirable alternative to the traditional
operating system design.

Common Applications Benefit
from an Exokernel

When comparing the results of benchmark tests
that were performed by Xok/ExOS (a version
of the Exokernel) with FreeBSD and OpenBSD
(two other operating systems), we see that Xok/
ExOS was able to complete 11 tests in just 41
seconds - whichisabout 19 seconds faster than the
operating systems it was compared with. On three
benchmark tests, Xok/ExOS did behave slightly
slower thanthe competition, but these results were
expected because of how the benchmark test was
weighted. The slightly slower results were also of
such a small degree as to not be really significant.
Asan overall score, the researchers state the Xok/
ExOS is about 32% more efficient than the other
operating systems that it was tested against.

Exokernel’s Flexibility is not Costly

Benchmark tests were also used to see if the
Exokernel’s flexibility added too much overhead
and made its execution less efficient. In the test,
Xok/ExOS was compared to OpenBSD/C-FFS.
The Xok/ExOS completed the test in 41 seconds
versus the 51 seconds of the competition. Thus,
Xok/ExOS was about 20% faster than the other op-
erating systems. Itisresults like this that prompted
Engler to state that “an Exokernel’s flexibility
can be provided for free” (Engler, 1998). Part of
the reason why the Exokernel is a little more ef-

The Exokernel Operating System and Active Networks

ficient is because the Exokernel is leaner - largely
because protection mechanisms that usually get
duplicated in a traditional operating system are
not present.

Aggressive Applications are
Significantly Times Faster

One of the goals of the extensible approach of the
Exokernelisthatits performance can be optimized.
In order to test this theory, researchers attempted
to make optimizations to applications running on
an Exokernel system. As an experiment, XCP and
CP were tested against each other. Although XCP
and CP are both file copy programs, XCP is a file
copy program that is optimized to take advantage
of the flexibility of the Exokernel Operating Sys-
tem. The test results show that the XCP file copy
program can complete its tasks about three times
faster than that of CP. Other experiments were
also conducted to test the speed of a Cheetah web
server. The Cheetah web server, when running
on top of the Exokernel OS (Xok), was found to
be four times faster, for small documents. These
results support the claim that the Exokernel OS
does allow the user to optimize application code
to achieve significant speed-ups in processing
speeds.

Local Control can Lead to
Enhanced Global Performance

The Exokernel researchers wondered if only
specific processes can be optimized, or if the
global performance of an operating system can be
optimized. The researchers tested the Exokernel
as it ran multiple applications concurrently and
compared the results with non-extensible operat-
ing systems. The results show the Exokernel is, at
least, as efficient as the non-extensible operating
systems. Furthermore, after an Exokernel Operat-
ing System is optimized — what the researchers
have called “local optimizations” — the “global
performance” of the Exokernel is also enhance.

Therefore, local optimizations do in fact support
the global optimization of the Exokernel.

Exokernel’s File Storage
Scheme Enhances Run-Time

The researchers conducted experiments to test
what Robert Grimm calls the Exokernel’s “fine
grained interleaving of disk storage” (Grimm,
1996). In the experiments, two applications were
compared as they each accessed 1,000 10-KByte
files. The Ekokernel’s “fine grained interleaving”
seems to account for a 45% faster file access time
than that of an operating system that does not use
this “fine grained interleaving” approach. The
Exokernel’s flexibility also seems to be respon-
sible for allowing the Exokernel to conduct “file
insert” operations about 6 times faster. These test
results seem to support the conclusion that the
Exokernel’sfile storage scheme does enhance the
over-all run-time of the operating system.

ACTIVE NETWORKING

One of the technologies that has benefited from
the Exokernel is Active Networking. The concept
of an active network evolved from research being
conducted at the Defense Advanced Research Proj-
ects Agency. This group is known for developing
the “DARPA Internet”, which is the foundation
for our modern day Internet.

Inatraditional network like the Internet, datais
passively transported from a start point to an end
point. Along its journey, the data passes through
nodes that route the data packets based on header
information while ignoring the actual data found
in the packet contents. In the words of David L.
Tennenhouse and others, the DARPA research
community identified the following problems
with networks;

1. “Thedifficulty of integrating new technolo-
gies and standards into the shared network

149

infrastructure.”

2. “Poor performance due to redundant opera-
tions at several protocol layers.”

3. “Difficulty accommodating new services in
the existing architectural model.”

(Tennenhouse, & Wetherall, 1996).

Tennenhouse and others state, in contrast to
a passive network, an active network contains
nodes that “can perform computations on, and
modify, the packet contents.” Furthermore, “this
processing can be customized on a per user or per
application basis” (Tennenhouse, & Wetherall,
1996). David Wetherall states well the benefit of
active networkswhen he states that active networks
“enable arange of new applications that leverage
computation within the network; and it would
accelerate the pace of innovation by decoupling
services from the underlying infrastructure”
(Wetherall, 1999).

A good example of an active network is pro-
vided by Parveen Patel. Patel states that active
packets may encrypt themselves before entering
an un-trusted portion of a network. The code to
conduct the actual encryption could be carried by
the active packets themselves, or the code could
be resident on the node and simply be executed
by the packets when they arrive. In either case,
the data packets are active within the network,
encrypting and decrypting themselves as neces-
sary when passing through un-trusted sections of
a network (Patel, 2002).

Hrishikesh Dandekar and others at NAI
Labs (Network Associates, Inc. of Los Angeles,
California) provide the link in our discussion that
joins Active Networks and the Exokernel Operat-
ing System. Their research is named AMP. They
state AMP is “a secure platform upon which the
mobile code [of an active network] can be safely
executed” (Dandekar, Purtell, & Schwab, 2002).
The interesting part is that “AMP is layered on
top of the MIT ExoPC (Exokernel) operating
System’s Xok kernel” (Dandekar, Purtell, &
Schwab, 2002).

150

The Exokernel Operating System and Active Networks

The Exokernel isagood foundation uponwhich
to build AMP because the Exokernel offers AMP
security, flexibility, and extensibility. Because
the Exokernel’s security mechanism “dovetails”
nicely with the needs of AMP, Dandekar and others
have stated AMPs “development time is reduced,
modularity isenhanced, and security requirements
can be addressed in a straightforward manner”
(Dandekar, Purtell, & Schwab, 2002).

Flexibility with the Exokernel is reflected in
its lack of abstractions. As Dandekar and others
state, “an exokernel provides a minimal set of
abstractions above the raw hardware. Only those
mechanisms required in order to control access
to physical resources and kernel abstractions are
provided” (Dandekar, Purtell, & Schwab, 2002).
As hardware gets abstracted by the operating
system, the use of that hardware becomes less
flexible. AMP’s “NodeOS” provides a set of in-
terfaces through which the code within an active
network can request services of the underlying
operating system. Abstracted by these interfaces
are services such as networking channels, thread
pools, memory pools, and domains. As Dandekar
and othersexplain, “these abstractions provide the
active application of platform-independent means
for accessing a common set of resources which
will be available across all of the heterogeneous
network” (Dandekar, Purtell, & Schwab, 2002).
It is precisely because the underlying Exokernel
provides a minimal set of abstractions that the
AMP NodeOS can utilize this functionality so
easily.

Lastly, the Exokernel was designed to be
extensible. The library operating system of the
Exokernel matches up nicely with the libraries
foundin AMP (libAMP). Anapplication like AMP
can only be as extensible as the operating system
that supports it. Thus, the superior extensibility
of the Exokernel makes possible the superior
flexibility of AMP.

Inconclusion of our look atactive networking,
we see that the three “problems with networks”
that were identified by DARPA are addressed by

The Exokernel Operating System and Active Networks

active networks. Active networks provide ameans
to 1) easily integrate new technologies into the
network infrastructure, 2) optimize performance,
and 3) easily accommodate new services. Because
the Exokernel makes our example of active net-
working possible, the Exokernel must share in the
credit of giving rise to a solution to the problems
with networks as identified by DARPA.

ANALYSIS AND DISCUSSION

In the following paragraphs, we present some of
the criticisms of the Exokernel Operating System
that have been offered by some of her detractors.
We address the criticisms and offer some of our
own. We offer further comments and reactions
as a way to stimulate more discussion about the
Exokernel Operating System.

Customer-Support

We begin our commentary with a quote from Jeff
Mogul of Compag Western Research Laboratory.
Mogul says, “Extensibility has its problems. For
example, it makes the customer-support issues
a lot more complicated, because you no longer
know which OS each of your customers is run-
ning” (Milojicic, 1999).

What Jeff Mogul seems to be pointing out
is that each extensible operating system can be
modified to the point of being unique. If each
extensible operating system is user-modified
and user-configured, then the challenge becomes
how to efficiently provide customer support for a
group of users if each user is essentially using a
different operating system. For example, if both
the file management system and the communica-
tion manager are uniquely modified, then trying
to solve the issues that arise from their interaction
could be very difficult.

Although providing customer support for an
extensible operating system might present new
challenges, it does not mean the extensible ap-

proach has to be eliminated. Previously (section
3.4), we explained that it is not necessary to cus-
tomize an entire operating system. In fact, many
users may not even need to customize any of the
operating system. They may simply rely on the
services provided by the user level library. So, as
long as users are using the standard code found in
the user level library, they are all using the same
version of the operating system and therefore
the customer service issue becomes a non-issue.
It is only those users that decide to modify and
optimize the libraries that pose the problem to
customer service.

Presumably, users that are savvy enoughto op-
timize their own code are probably savvy enough
to trouble-shoot the issues that may arise from
working with such a flexible operating system. In
reality, it might not even be individual users that
are optimizing their own code but rather software
manufacturers that customize a user-level library
so their product works faster on the extensible
operating system. If this were the case, then per-
haps there is no additional customer support issue
for users of the standard user level libraries, and
perhaps customer support issues that arise from
optimized user-level libraries should be handled
by the creators of the optimized code. So, if the
customer support issue is even an issue at all, it
becomes and issue for the optimizers of the user-
level libraries and not an issue for the engineers
of the extensible operating system. Thus, perhaps
an extensible operating system should be brought
to market and second-party software manufactur-
ers should accept the responsibility of customer
support if they choose to modify the standard
user libraries.

On the other hand, as was stated previously
“extensibility could actually help the customer
support issue” (Leschke, 2004). In so far as ex-
tensible operating systems are easier to fix, then
it should be easier to eliminate bugs and offer
the community a more solid, error-free operating
system. Since user level libraries can be replaced
independently of the kernel, providing updated and

151

corrected libraries to the users of an extensible
operating system should be straight forward. So,
if extensibility means there might be fewer bugs
or issues in the kernel, and also if extensibility
means updated user level libraries might be eas-
ily added to an existing system, then perhaps an
extensible operating system might lead to less of
a customer support issue.

Furthermore, one might even argue that cus-
tomer support will be easier to provide with an
extensible operating system. Consider a customer
support issue that arises from the use of a par-
ticular user level library. In so far as the issue is
contained within that one user level library, then
the customer support provider only needs to be
anexpertinthatone library. This means customer
support employees can be specialized. In so far
as it is easier to train someone to be an expert
in a limited number of user level libraries rather
than an expert in the entire operating system, it
seems that training customer support personnel
will also be much easier with an extensible op-
erating system.

Eliminating Management

One may argue that itis not necessary to eliminate
all management from the operating system. Per-
haps there are some operating system management
functions that cannot be further optimized, and
therefore, they should continue to be provided by
the kernel. Or, perhaps the amount of optimization
that is possible is so small as to not be worth the
effortto move them outside the kernel. Perhaps the
better approach is to allow the kernel to manage
those processes that cannot be further optimized
and to move into user-space that code that can
be further optimized. A very logical question is -
how will we know when code cannot be further
optimized? Unfortunately, this is a question that
cannot be answered without some further experi-
ence. Onone hand, it seems that all processes will
probably agree upon some common approaches
to management, whereas on the other hand, if one

152

The Exokernel Operating System and Active Networks

wants maximum flexibility then one must move
all management out of the kernel and make the
code available in user-space.

The point we are trying to argue is that maybe
eliminating all management from the kernel is
too strong of a position. Maybe some manage-
ment should remain in the kernel while other
management code should be moved to user-space
where it can be modified and optimized. Further
research into this issue may reveal that maximum
optimization can be achieved evenifthe operating
system kernel retains some of the management
responsibility.

As an illustration of our point, we cite Riech-
mannand Kleindder asthey state “As multithread-
ed applications become common, scheduling
inside applications play a very important role for
efficiency and fairness” (Riechmann, & Kleindder,
1996). They further state the Exokernel’s design
leads to inefficiency because the Exokernel’s
thread scheduling algorithm requires an additional
thread switch during execution. Their solutionisto
separate the management policy from the manage-
mentimplementation. Their research demonstrates
that if one places the thread switching mechanism
inside the kernel while allowing user-level code
to handle the scheduling algorithm, some effi-
ciency is gained over the Exokernel’s approach.
The idea of two level scheduling was also used
by (Reuven & Wiseman, 2006) even though they
suggest to implement both of the scheduling level
within the kernel, but their implementation will
be activated only if thrashing occurs (Wiseman,
2009), (Jiang, 2009).

Riechmann and Kleindder argue our point
for us. Our point is that perhaps a clean division
between implementing protection within the ker-
nel and implementing management within user
code is too extreme. The research conducted by
Riechmann and Kleindder suggests that a pure
Exokernel approach might not be the best answer.
The Exokernel’s approach needs to be embraced,
butjust nottightly. In conclusion, perhaps the best
design for an operating system is one in which

The Exokernel Operating System and Active Networks

there is a separation of mechanism from policy.
Although the Exokernel has a policy of only
allowing code in user-space to handle manage-
ment of processes, perhaps on occasion the actual
mechanism of management has to allow for some
code to be executed within the kernel whenever
it is more efficient to do so.

Optimizing Usage

When we talk about optimizing a computer, we
are really talking about optimizing computer
hardware rather than computer code. Admittedly,
we do optimize computer code, but only as a way
to optimize computer hardware. Thus, optimiz-
ing computer hardware is always the real goal.
As such, who is the most qualified to optimize
computer hardware? Software engineers? One
might argue that hardware engineers — those that
have an intimate understanding of the hardware
components — are best suited for optimizing
computer hardware. If the extensible approach
becomes main-stream, we might see the line that
separates computer engineering from software
engineering becoming less distinct. Perhaps the
engineers of the future will play two roles — one
of hardware engineer and one of software engi-
neer. The engineers of the future will surely need
a strong understanding of computer code - since
that is how we communicate with hardware - but
they will also need an expert understanding of
computer hardware, since that is what is actually
being optimized. So, the extensible approach to
operating system design might lead to a paradigm
shift in how computers are optimized - but the
final result will be a society of fully optimized
computers.

The paradigm shift that will be caused by the
extensible operating system will help put the sci-
ence back into the Computer Science of the Infor-
mation Technology Industry. Computer developers
will be forced to make good Computer Science
decisions from the ground up. Optimization will
become the central focus of the computer industry.

Optimization will eliminate the design approach
seen in the current monolithic operating systems
and give birth to a new breed of operating sys-
tem that can keep pace with advancing computer
technology. The entire computer science industry
will experience a tremendous speed-up once the
extensible operating system design becomes fully
embraced.

Is Extensibility the Answer?

Druschel and others have argued against the Ex-
okernel by saying “it is unclear to what extent the
performance gains are due to extensibility, rather
than merely resulting from optimizations that
could equally be applied to an operating system
that is not extensible” (Druschel, Pai, & Zwae-
nepoel, 1997). Through their research, Druschel
and others have shown that traditional monolithic
operating systems can be optimized just like the
Exokernel. They claim the key to the speed-up is
the optimization, not extensibility.

The Druschel research group tempers their
argumentagainstthe Exokernel by saying “the real
value in extensible kernels lies in their ability to
stimulate research by allowing rapid experimenta-
tion using general extensions” (Druschel, Pai, &
Zwaenepoel, 1997). They seem to be saying that
extensible operating systems provide a means to
quickly engineer prototypes of operating systems.
This fast prototyping has caused a speed-up in
the research, which had lead to a quicker way
to discover techniques for optimizing operating
systems. Although the Druschel group would say
extensibility is not the answer, they do support
the extensible approach because it is a tool that
can be used to speed-up research and help bring
a solution to market faster.

The argument provided by the Druschel group
is well founded. However, perhaps they are over-
stating their position. Although we will agree that
any code can be optimized - even monolithic op-
erating systems - we still hold strong to the point
that it is extensibility that really makes optimiza-

153

tion possible. In order to optimize an operating
system, the system must first be flexible enough
to be optimized. An operating system that is ex-
tensible is by its very nature open to changes and
therefore easy to optimize. Although traditional
operating systems can be optimized, they lack
the flexibility required to make the changes easy.
Because extensible operating systems are easy to
change, they are perhaps the best design to work
withwhentrying to optimize an operating system.
Therefore, we still maintain that it is extensibility
that is the foundation of being able to optimize
operating systems.

CONCLUSION

As we bring our discussion to a close, we recall
the two forces that are stretching the capabili-
ties of the modern monolithic operating system.
On one side there is the need for the operating
system to be more flexible to accommodate new
technologies. On the other side is the need for
the operating system to become faster so it can
keep pace with faster hardware and faster com-
munication speeds. Our discussion showed how
an extensible operating system like the Exokernel
might fulfill both needs. Extensibility allows an
operating system to be flexible enough to meet
the changing demands of new technologies, while
also making optimization easier, which translates
into faster operating systems that can keep pace
with faster computing environments.

In conclusion, there is a need for a faster and
more flexible operating system, and the exten-
sible approach of the Exokernel seems to meet
this need. The speed and flexibility offered by
the Exokernel will help operating systems avoid
being the performance bottleneck in computer
systems for years to come. Although extensible
operating system technology is still in its infancy,
the initial findings are encouragingto researchers.
If contemporary operating systems are to keep
pace with the forces that are being placed upon

154

The Exokernel Operating System and Active Networks

them, then modern operating system designers
need to embrace the extensible approach found
in the Exokernel.

REFERENCES

Chen, B. (2000). Multiprocessing with the Exok-
ernel Operating System. Unpublished.

Dandekar, H., Purtell, A., & Schwab, S. (2002).
AMP: Experiences with Building and Exokernel-
based Platform for Active Networking. In Pro-
ceedings: DARPA Active Networks Conference
and Exposition, (pp. 77-91).

Druschel, P., Pai, V., & Zwaenepoel, W. (1997).
Extensible Kernels and Leading the OS Research
Astray. In Operating Systems, (pp. 38-42).

Engler, D. R., Kaashoek, M. F., & O’Toole, J.
(1995). Exokernel: an Operating System Architec-
ture for Application-level Resource Management.
In 15th ACM Symposium on Operating Systems
Principles (pp. 251-266).

Ganger, G., Engler, D., Kaashoek, M. F., Bricefio,
H.,Hunt, R., & Pinckney, T. (2002). Fastand Flex-
ible Application-level Networking on Exokernel
Systems. ACM Transactions on Computer Science,
20(1), 49-83. d0i:10.1145/505452.505455

Grimm, R. (1996). Exodisk: Maximizing Ap-
plication Control Over Storage Management.
Unpublished.

Itshak, M., & Wiseman, Y. (2008). AMSQM:
Adaptive Multiple SuperPage Queue Manage-
ment. In Proc. IEEE Conference on Information
Reuse and Integration (IEEE IRI-2008), Las
Vegas, Nevada, (pp. 52-57).

Leschke, T. R. (2004). Achieving Speed and
Flexibility by Separating Management From
Protection: Embracing the Exokernel Operating
System. Operating Systems Review, 38(4), 5-19.
doi:10.1145/1031154.1031155

The Exokernel Operating System and Active Networks

Milojicic, D. (1999). Operating Systems - Now
andinthe Future. IEEE Concurrency, 7(1), 12-21.
doi:10.1109/MCC.1999.749132

Ousterhout, J. (1989). Why Aren’t Operating Sys-
tems Getting Faster as Fastas Hardware. Unpub-
lished. Carver, L., Chen, B., & Reyes, B. (1998).
Practice and Technique in Extensible Operating
Systems. Manuscript submitted for publication.
Engler, D. R. (1998). The Exokernel Operating
System Architecture. Unpublished.

Patel, P. (2002). An Introduction to Active Net-
work Node Operating Systems. Crossroads, 9(2),
21-26. doi:10.1145/904067.904072

Reuven, M., & Wiseman, Y. (2006). Medium-
Term Scheduler as a Solution for the Thrashing
Effect. The Computer Journal, 49(3), 297-309.
doi:10.1093/comjnl/bx1001

Riechmann, T., & Kleindder, J. (1996). User-Level
Scheduling with Kernel Threads. Unpublished.

Tennenhouse, D. L., Smith, J. M., Sincoskie,
W. D., Wetherall, D. J., & Minden, G. J. (1997).
A Survey of Active Network Research. IEEE
Communications Magazine, 35(1), 80-86.
d0i:10.1109/35.568214

Tennenhouse, D. L., & Wetherall, D. J. (1996).
Towards an Active Network Architecture. Com-
puter Communications Review, 26 (2).

Wetherall, D. (1999). Active Network Vision
and Reality: Lessons From a Capsule-based Sys-
tem. Operating Systems Review, 34(5), 64—79.
d0i:10.1145/319344.319156

Whatt, D. (1997). Shared Libraries in an Exokernel
Operating System. Unpublished.

155

156

Chapter 9
Dynamic Analysis and Profiling
of Multithreaded Systems

Daniel G. Waddington
Lockheed Martin, USA

Nilabja Roy
Vanderbilt University, USA

Douglas C. Schmidt
Vanderbilt University, USA

ABSTRACT

As software-intensive systems become larger, more parallel, and more unpredictable the ability to analyze
their behavior is increasingly important. There are two basic approaches to behavioral analysis: static
and dynamic. Although static analysis techniques, such as model checking, provide valuable informa-
tion to software developers and testers, they cannot capture and predict a complete, precise, image of
behavior for large-scale systems due to scalability limitations and the inability to model complex ex-
ternal stimuli. This chapter explores four approaches to analyzing the behavior of software systems via
dynamic analysis: compiler-based instrumentation, operating system and middleware profiling, virtual
machine profiling, and hardware-based profiling. We highlight the advantages and disadvantages of
each approach with respect to measuring the performance of multithreaded systems and demonstrate
how these approaches can be applied in practice.

INTRODUCTION more than one program to execute simultane-

ously. Multitasking is achieved by dynamically
Microprocessors execute code as a sequential scheduling different executions to the available
flow of instructions. Most contemporary operat- processors over time (sometimes referred to as
ing systems support multitasking, which allows time slicing).

Copyright © 2010, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Dynamic Analysis and Profiling of Multithreaded Systems

The unit of logical flow within a running pro-
gram is a thread. Although the exact definition of
a thread can vary, threads are typically defined
asa lightweight representation of execution state.
The underlying kernel data structure for a thread
includes the address of the run-time stacks, prior-
ity information, and scheduling status. Eachthread
belongs to a single process (a process requires at
least one thread). Processes define initial code
and data, a private virtual address space, and
state relevant to active system resources (e.g.,
files and semaphores). Threads that belong to
the same process share the same virtual address
space and other system resources. There is no
memory protection between threads in the same
process, which makes it easy to exchange data
efficiently between threads. At the same time,
however, threads can write to many parts of the
process’ memory. Data integrity can be quickly
lost, therefore, if access to shared data by indi-
vidual threads is not controlled carefully.

Threads havetraditionally been used onsingle
processor systemsto help programmersimplement
logically concurrent tasks and manage multiple
activities within the same program (Rinard,
2001). For example, a program that handles both
GUI events and performs network 1/0 could be
implemented with two separate threads that run
within the same process. Here the use of threads
avoids the need to “poll” for GUI and packet 1/0
events. It also avoids the need to adjust priorities
and preempt running tasks, which is instead per-
formed by the operating system’s scheduler.

With the recent advent of multicore and sym-
metric multiprocessor (SMP) systems, threads
represent logically concurrent program functions
that can be mapped to physically parallel process-
ing hardware. For example, a program deployed
on a four-way multicore processor must provide
at least four independent tasks to fully exploit
the available resources (of course it may not get
a chance to use all of the processing cores if they
are occupied by higher priority tasks). As parallel
processing capabilities in commodity hardware

grow, the need for multithreaded programming has
increased because explicit design of parallelism
in software is now key to exploiting performance
capabilities in next-generation processors (Sutter,
2005).

This chapter reviews key techniques and
methodologies that can be used to collect thread-
behavior information from running systems. We
highlight the strengths and weaknesses of each
technique and lend insight into how they can be
applied from a practical perspective.

Understanding Multithreaded
System Behavior

Building large-scale software systems is both
an art and an engineering discipline. Software
construction is an inherently iterative process,
where system architects and developers iterate
between problem understanding and realiza-
tion of the solution. A superficial understanding
of behavior is often insufficient for production
systems, particularly mission-critical systems
where performance is tightly coupled to varia-
tions in the execution environment, such as load
on shared resources and hardware clock speeds.
Such variations are common in multithreaded
systems where execution is affected directly by
resource contention arising from other programs
executing at the same time on the same platform.
To build predictable and optimized large-scale
multithreaded systems, therefore, we need tools
that can help improve understanding of software
subsystems and help avoid potential chaotic ef-
fectsthat may arise from their broader integration
into systems.

Multithreaded programs are inherently com-
plex for several reasons (Lee, 2006; Sutter &
Larus, 2005), including: (1) the use of nondeter-
ministic thread scheduling and pre-emption; and
(2) control and data dependencies across threads.
Most commercial-off-the-shelf (COTS) operating
systems use priority queue-based, preemptive
thread scheduling. The time and space resources

157

Dynamic Analysis and Profiling of Multithreaded Systems

a thread needs to execute on an operating system
are thus affected by:

e Threadpriority, which determinesthe order
in which threads run;

. Processor affinity, which defines the proces-
sors that the thread may run on;

. Execution state, which defines whether the
thread is ready, waiting, or stopped; and

. Starvation time, which is caused by system
delay during peak load periods.

Switching execution context between multiple
threads results in an execution “interleaving” for
each processor inthe system. Inasingle-processor
system, there is only one stage of scheduling:
the choice of deciding which runnable thread to
execute next. Systems that have multiple cores or
SMP processors require an additional stage that
maps the threads ready to run on to one of many
possibly available cores, as shown in Figure 1.

Even if we know exactly how long each thread
will have access to the processor (which ignores
any form of priority-driven pre-emption and
interthread dependency), the number of feasible
interleavingsthat can occur inthe system are stag-
gering. For example, using the criteria in Figure

1, which has only four independent threads, each
with eightexecution quanta, there are 10" possible
interleavings for justone processor! Server-based
systems with hundreds of threads and tens of pro-
cessors are now common. Over the next decade
we expect tera-scale systems will have hundreds
of cores (Intel Corporation, 2006b).

Approaches to Extracting
Multithreaded Behavioral
Characteristics

Therearetwo basic approaches to behavioral anal-
ysis: static and dynamic. Static analysis inspects
the underlying constituents of a system without
executingany program (Jackson & Rinard, 2000).
It therefore requires some “model” of the system
or implementation artifact that is correlated
directly with expected behavior. For example,
analysis of program source code is considered a
form of static analysis. This type of analysis has
the advantage that it can be performed without
running the system. In particular, it can explore
dimensions of behavior that are hard to stimulate
through manipulation of program input.

Static analysis tools typically construct
program execution models, potentially through

Figure 1. Interleavings caused by 1-stage and 2-stage scheduling

Different
Quant
i 1-stage Thread
éé Scheduler
thread A] OO ——» Single Processor
thread B i N e s e s ey 4
thread C CoOoOO— N es-CIE
thread D i | i | E—»
Work Being
Performed

thread A]
thread B [)
thread C A
thread D

2-stage Thread

VYV

Scheduler

o

158

Dynamic Analysis and Profiling of Multithreaded Systems

reverse engineering. These models can then be
analyzed to derive and ensure behavioral char-
acteristics. Model checking (Clarke, Grumberg,
& Peled, 2000) is a static analysis technique that
is often applied to multithreaded programs to
explore all feasible interleavings exhaustively to
ensure correctness properties, such as absence
of deadlock and livelock (Rinard, 2001). This
approach can check all feasible paths of execution
(and interleavings) and thus avoid leaving any
behavior unchecked.

Inpractice, model checking iscomputationally
expensive and limited in its applicability, due to
the vast number of feasible interleavings a large
multithreaded system may exhibit. Other forms
of static analysis, such as automated checking of
design intent (Greenhouse, 2003) and program
analysis driven theorem proving (Freund &
Qadeer, 2003), have also been applied to multi-
threaded systemsto ensure correctbehavior. Each
approach trades off analytical thoroughness and
computational cost. Static-analysis techniques
typically do a good job of modeling relative time
and temporal ordering. They do not, however,
model—and thus cannot reason about—absolute
(wall-clock) time.

The only practical approach to behavioral
analysis that can incorporate aspects of absolute
timeisdynamic analysis, also known as profiling.
Profiling is inspection of behavior of a running
system. An advantage of this approach is that
it can measure aspects of the system and know
that they are exactly representative of the system.
Approaches to profiling can be classed as either
active or passive. Active profiling requires that the
application or system being measured explicitly
generates information about its execution. An
example of active profiling is the user of compiler-
based probe insertion, where the application makes
callbacks to the trace collection engine to record
execution behavior. Conversely, passive profiling
relies on explicit inspection of control flow and
execution state through an external entity, such
as a probe or modified runtime environment.

Passive profiling typically does not require any
modification of the measured system, butis harder
toimplementand may require specialized tracing
hardware.

Profiling (whether active or passive) collects
precise and fine-grained behavioral data from a
running multithreaded systems, which can be
coupled with off-line analysis to help summarize
and reason about observed results. The collected
dataisthus accurate and representative of system
execution, as long as the overhead of the mea-
surement has not unduly influenced the results.
Profiling can also only provide behavioral data
for control pathsthatactually execute, so success-
fully applying profiling tools depends largely on
analyzing multiple runs of the program that test
all relevant paths inthe system. This coverage can
be achieved through careful selection of stimuli
(e.g., input data) to the system, as well as through
artificial fault injection.

Profiling is limited, however, to the inspection
of behavior that can be made torun by appropriate
stimulation of the system, for example, through
selection of input. This limitation means that
profiling is more useful for behavior analysis in
circumstances where a sampling of behavior is
sufficient. For example, profiling is useful for op-
timizations that aim to improve performance on
statistically frequent paths of execution. Profiling
is thus not well suited to ensure correct behavior
in a system when only one execution in a million
can lead to system failure.

Bothstatic analysisand dynamic analysis have
their advantages and disadvantages. Advanced
behavioral analysis solutions (Nimmer & Ernst,
2001; Waddington, Amduka, DaCosta, Foster,
& Sprinkle, 2006) commonly use a combination
of static and dynamic analysis to provide a more
complete picture of system behavior. The re-
mainder of this chapter presents and evaluates
general approaches to profiling within the context
of multithreaded systems. We examine the type
and scale of behavioral data that can be collected
dynamically from running systems and review

159

Dynamic Analysis and Profiling of Multithreaded Systems

state-of-the-art profiling tools and methodologies
available today that operate at various levels of
abstraction, including the operating system, vir-
tual machine, and middleware levels.

BACKGROUND

Behavioral analysis is the examination and
understanding of a system’s behavior. Within
the context of computing systems, behavioral
analysis can be applied throughout the software
lifecycle. The role of behavioral analysis—and
the benefits it brings—vary according to how it
is applied and the point in the life cycle to which
itisapplied. At a broad level, behavioral analysis
supports assurance, optimization, diagnosis and
prediction of software-system execution. Table
1 shows the relationship between these roles and
different stages of software development.

Nondeterministic Behavior in
Multithreaded Systems

Systemsthat behave accordingto classical physics,
including electronic computers that are based on
the von Neumann architecture, are deterministic
inastrict sense. Actually predicting the behavior
of acomputing system, however, is fundamentally

connected with the ability to gather all necessary
information about the start state of the system. In
most cases this is impractical, primarily due to
very long causal chains (sequences of interrelated
effects) and environmental interactions (i.e., input)
that are hard to model and predict. In this chapter,
we define determinism as the ability to predict the
future state of a system. We therefore consider
computer systems as generally being nondeter-
ministic because we cannot practically predictthe
future state of the system. Accurate predictions
would require a complete understanding of the
start state, as well as prediction of environmental
variables, such as user interaction and environ-
mental effects (e.g., temperature sensitivity).

Most enterprise-style computing systems
today demonstrate nondeterministic behavior.
Key sources of nondeterminism in these systems
includedistributed communications (e.g., interac-
tion across a network to machines with unknown
state), user input (e.g., mouse/keyboard), and
dynamic scheduling (e.g., priority-based with
dynamic priority queues). These activities and
actions typically result in a system whose execu-
tion behavior is hard to predict a priori.

A prominent cause of nondeterminism in
multithreaded systems stems from the operating
system’s scheduler. The choice of which logical
thread to execute on which physical processor is

Table 1. Roles of behavioral analysis in software-systems development

Role Lifecycle Stage Purpose
Assurance Design, Implementation, Ensuring correct functionality
Testing and performance

Optimization Implementation Ensuring optimal use of com-
puting resources

Diagnosis Integration, Testing Determining the condi-
tions that lead to unexpected
behavior

Prediction Maintenance Assessing how program modi-

fications and integration will
affect system behavior

160

Dynamic Analysis and Profiling of Multithreaded Systems

derived fromanumber of factors, including thread
readiness, current system load (e.g., other threads
waiting to be run), priority, and starvation time
(i.e., how long a thread has been waiting to be
run). Many COTS operating systems use complex
scheduling algorithms to maintain appropriate
timeliness for time-sensitive tasks and also to
achieve optimal use of processing resources. From
the perspective of behavior analysis, however,
these types of scheduling algorithms make static
prediction of scheduling outcome infeasible in
practice. Certain properties, such as absence of
deadlock, can be checked effectively using static
analysis because all possibilities can be explored
explicitly. However, other properties, such as the
absolute time takento execute given functionality,
can only be assessed practically using runtime
profiling.

Behavioral Characteristics Relevant
to Multithreaded Programs

Certain elements of behavior result from, and
are thus pertinent to, the use of multithreaded
programming. Table 2 describes some different
characteristics that are commonly specified and
measured inreal-time and safety-critical systems.
These are the types of characteristics that can be
analyzed using the profiling tools and technologies
discussed in this chapter.

To provide a sense of the necessary sam-
pling scale (i.e., frequency of events) in today’s
COTS-based systems, we performed a number
of simple experiments to gather some system
measures. Understanding the expected sampling
rates is useful to understanding the viability

Table 2. Common characteristics of multithreaded systems

Behavioral
Characteristic

Description

Synchronization over-

typically have different overhead.

The additional processing time incurred by the use of synchronization mechanisms, such as mutexes,
head semaphores, and condition variables. Different mechanisms and topologies (e.g., inter- and intra-processor)

Task latency and jitter

The time between a thread being released (e.g., by a lock being freed) and regaining access to the processor.
The task jitter is the observed variation in latency.

Task execution quanta
the operating system scheduler.

The length of time a thread executes for before either yielding access explicitly, or by being pre-empted by

Unsafe memory access

Data that is being shared between threads must be controlled carefully to avoid data corruption due to the

inability to modify data in one atomic action. To ensure the integrity of shared data is maintained, appropriate
synchronization mechanisms must be used.

Priority inversion

Priority inversion occurs when a lower priority task is preventing a higher priority task from executing by
being unable to execute and thus release a resource required by the higher priority task. A common solution
to the priority inversion problem is for the lower priority to temporarily inherit the higher (waiting) priority
so that it can release the resource.

Deadlock and livelock

Deadlock is a cyclic dependency between two or more threads. For example, thread A is waiting for a
resource R1 from thread B before it will give up R2, and thread B is waiting for resource R2 from thread A
before it will give up R1. In this condition both threads are blocked and cannot progress. Livelock is a similar
condition to deadlock, except that the interdependent threads cause each other to perform an infinite amount
of work before becoming free.

Effective parallelism

Effective parallelism is a measure of the ability of threads to perform work over time. For example, threads
that do not have data interdependencies have a very high effective parallelism, whereas threads that are
“lock-stepped” by a single shared resource have a low effective parallelism.

Worst-case execution
time

Worst-case execution time (WCET) relates to task latency and jitter caused by load on the system. WCET is
the maximum time a given thread or set of threads takes to perform some function. This measure is invalu-
able in building real-time systems that must adhere to strict deadlines.

161

Dynamic Analysis and Profiling of Multithreaded Systems

and impact of different profiling techniques.
Our experimentation is based on measurements
taken from Microsoft Windows XP, running on
a dual-processor, hyper-threaded (Intel Xeon 2.8
GHz) system, executing a stress-test Web client/
server application. The measurementswere taken
using both Windows performance counters and
the on-chip Intel performance counters. Table 3
shows the results.

The data listed in Table 3 iscomprised primar-
ily of finer-grained metrics that occur at very high
frequencies in the lower levels of the system. Of
course, lessfrequent “application-level” eventsare
also of interest in understanding the behavior of
a system. For example, rare error conditions are
often of importance. The data in Table 3 shows
that the frequency (and therefore quantity) of
measurable events can vary significantly by up
to nine orders of magnitude. Because the impact
of measurement s scaled proportionally, analysis
methodologies that work well for low-frequency
events may not do so for higher-frequency
events.

Table 3. Example metric ranges

Challenges of Multithreaded System
Profiling

The remainder of this chapter focuses on the re-
alization and application of runtime profiling on
multithreaded systems. Profiling multithreaded
systems involves addressing the following key
challenges:

. Measurement of events at high frequen-
cies—Events of interest typically occur at
high frequency. The overhead and effect of
measurement on the system being measured
must be controlled carefully. Without careful
control of overhead, results become skewed
asthe process of measurementdirectly alters
the system’s behavior.

. Mapping across multilevel concepts—
Threads can be used at multiple levels of a
system. Forexample, threads can existinthe
operating system, virtual machine, middle-
ware, and in the application (lightweight
threads and fibers). Virtual machine and
application-layer threads can map to under-
lying operating system threads. Extracting

Category Metric

Range

Processor

Clock Rate

2,793,000,000 Hz *

Micro-ops Queued

630,000,000 uops/second *

Instructions Per Second

344,000,000 instructions/second *

L2 Cache Reads

65,000,000 reads/second *

Thread Schedul-
ing

Number of Threads

500 total count

Context Switch Rate

800-170,000 switches/sec

Thread Queue Length

0-15 total count

Scheduling Quanta

20-120 ms

System Resources

System Calls

400-240,000 calls/sec

Hardware Interrupts

300-1000 interrupts/sec

Synchronization Objects

400-2200 total count

* per logical processor

162

the mapping between thread representations
isinherently hard because in many cases the
mappings are not one-to-one and are even
adjusted dynamically.

Extraction of complex interactions—
Threads represent the fundamental unit
of execution in a software system and are
inherently interdependent. Their interac-
tions are facilitated through the sharing
of system resources, such as memory, file,
and devices. Determining which resources
are the medium of thread interaction is
inherently hard because measuring events
on all of the resources in the system is not
feasible due to excessive instrumentation
overhead.

Interpolation between raw events and
broader properties—Deriving the behav-
ior of a system requires more than simple
collection of event data. Raw event data
(i.e., data collected directly from low-level
execution activities) must be used to build

Figure 2. Different points of code modification

Source-to-
source
transformation
(meta-

Instrumentation

Dynamic Analysis and Profiling of Multithreaded Systems

a composition of behavior that can be more
readily analyzed by engineers. Abstraction
and collation of data is a key requirement in
deriving properties of synchronization that
exist in multithreaded systems.

Researchinthe area of multithreaded software
profiling and analysis has made some inroads into
these challenges. In this chapter, we review the
state-of-the-art in tools and techniques, some of
which are commercial products and others that
are research prototypes, and discuss how they
try to address some of the challenges described
above.

COMPILER-BASED
INSTRUMENTATION TECHNIQUES

The most common approach to runtime profil-
ing is to modify the code that executes so it
explicitly generates trace information. A wide

Instruction level
binary rewriting

programming) typically with =

that introduces ggggetir;it;s: - control flow Just-in Time
explicit trace Aspect- redirection and wm -
functionality into Oriented trampoline modification of
existing source Programming. functions). binary

code.

instructions.

A B c D
Preprocessed Binary Code Binary Code

1 Simulation
Instrumented code targets a processor |

Instrumented code targets same processor as = |—
Instrumented code targets a different processor ¥ I—

Binary Code
(Loaded/
Executing)

m

simulator
Native

original binary code
Cross-target

from original binary code

163

Dynamic Analysis and Profiling of Multithreaded Systems

array of techniques can be used to generate this
information, applied at different stages of the
program code lifecycle, as shown in call-outs A
to D in Figure 2.

Source-Code Instrumentation

Instrumenting source code manually is imprac-
tical in large systems. Instrumentation can be
automated, however, through source-to-source
transformation. Metaprogramming frameworks,
such as Proteus (Waddington & Yao, 2005), TXL
(Cordy, Halpern, & Promislow, 1991), Stratego
(Visser, 2001) and DMS (Baxter, 2004), enable
modifications to source code before it is com-
piled or preprocessed (Figure 2, label A). These
metaprogramming frameworks provide a pro-
gramming language that can be used to define
context-sensitive modifications to source code.
Transformation programs are compiled into ap-
plications that perform rewriting and instrumen-
tation of source, which is given as input. Source
code can also be instrumented just before it is
compiled in a form of preprocessing (Figure 2,
label B). Aspect-oriented programming (Spinc-
zyk, Lohmann, & Urban, 2005; Kiczale, Hilsdale,
Hugunin, Kersten, Palm, & Griswold, 2001) isan
example of preprocessed code modification.
Applying instrumentation to source code—as
opposed to applying it to binary code—makes it
easier to align trace functionality with higher-
level, domain-specific abstractions, which mini-
mizes instrumentation because the placement of
additional code is limited to only what is necessary.

For example, to measure the wait times of threads
thatare processing HT TP packets received froma
network in a given application, developers could
instrument only those wait calls that exist in a
particular function, as opposed to all wait calls
across the complete program. Definition of the
context (functionand condition) is straightforward
in a metaprogramming or aspect-programming
language. The following excerpt illustrates an
AspectC++ (Spinczyk et al., 2005) rule for such
an example.
Given the original code:

#include <stdio.h>
#include <pthread.h>

pthread_mutex_t * mute;
int count = 0;

int main() {
pthread_mutex_init(mute, NULL);
pthread_mutex_lock(mute);
count = 1;
pthread_mutex_unlock(mute);

ReadPacket();
return O;

}

void ReadPacket() {
/* code that we wish to instrument */
pthread_mutex_lock(mute);
pthread_mutex_unlock(mute);

The following AspectC++ aspect defines a
rule that inserts calls to function TraceEvent()
after each call to pthread_mutex_lock that exists
within function ReadPacket (expressed through
a join-point filter). (Box 1)

Box 1.
aspect TraceAspect {
{
TraceEvent();
}

advice call(“% pthread_mutex_lock(...)") && within(“% ReadPacket(...)") : after()

164

Dynamic Analysis and Profiling of Multithreaded Systems

The result of “weaving” (i.e., performing
source-to-source transformation) the above source
code is the following. The weaving process has
defined additional classes and inline functions to
support the specified trace functionality. It has
alsoredirected control flow according to the trace

Aspect-oriented programming and other forms
of source-to-source transformation are useful for
selective and precise instrumentation of source
code. Modification of source code is portable with
respect to different processor architectures. The
performance impact of the measurement is often
minimal because instrumentation is customized

requirement (after call to function). (Box 2)

Box 2.

#ifndef __ac_fwd_TraceAspect__
#define __ac_fwd_TraceAspect
class TraceAspect;
namespace AC {
inline void invoke_TraceAspect_TraceAspect_a0_after();

}
#endif

#line 1 “main.cc”
#include <stdio.h>
#include <pthread.h>

pthread_mutex_t * mute;

int main()

{
pthread_mutex_init(mute, NULL);
pthread_mutex_lock(mute);
pthread_mutex_unlock(mute);

return O;

}

/* Function generated by aspect weaver to call the “trace” aspect
after calls to pthread_mutex_lock */

inline int __call__ZN10ReadPacketEv_0_0 (::pthread_mutex_t * arg0) {
AC::ResultBuffer< int > result;
:new (&result) int (::pthread_mutex_lock(arg0));
AC:invoke_TraceAspect_TraceAspect_a0_after ();
return (int)result;

}

void ReadPacket()

{
__call__ZN10ReadPacketEv_0_0 (mute);
pthread_mutex_unlock(mute);

continued on following page

165

Dynamic Analysis and Profiling of Multithreaded Systems

Box 2. continued

class TraceAspect {

public:

}

}

public:

}
h

namespace AC {

a0_after () {

}

static TraceAspect *aspectof () {
static TraceAspect __instance;
return & _instance;

static TraceAspect *aspectOf () {
return aspectof ();

void __a0_after()

{
printf(“TRACE");

inline void invoke_TraceAspect_TraceAspect_

::‘TraceAspect::aspectof()->__a0_after ();

and only inserted where absolutely necessary.
Instrumentation can be performed in the same
order of time that is needed to compile the code.
Source-code instrumentation is ideal for coarse-
grained event tracing, particularly where the
trace criteria must be related to application-level
abstract events that are hard, if not impossible,
to detect at the instruction level. Nevertheless,
source-code instrumentation is target language
dependentand canalso be problematic when deal-
ingwith language idiosyncrasies, suchas language
preprocessing and syntactic variations.

Static Binary-Code Instrumentation

An alternative approach to adding event-tracing
functionality to source code isto modify compiled
binary code directly. Many compilers, such as
GNU GCC, and profiling tools, such as Rational
Purify and Quantify (IBM Corporation, 2003),

166

can compile code with additional profiling instru-
mentation and also to link with pre-instrumented
runtime libraries. Forexample, applying the com-
mand line options —pg, -ftrace-arcs, and
—-ftest-coverage,tothe GNU GCCcompiler
produces binary code that is instrumented with
additional functionality that traces the count of
function calls and basic blocks executed in the
program. The following excerpts show the basic
profiling instrumentation produced by the GNU
GCC compiler for this example C source code:

void foo(){
if(i<10)
i++;
else
i=0;
return;
}

The generated assembly code (x86) without
instrumentation is shown in Box 3.

Dynamic Analysis and Profiling of Multithreaded Systems

Box 3.
08048373 <foo>:
8048373: 55 push %ebp
8048374: 89 eb5 mov %esp,%ebp
8048376: 83 3d 78 95 04 08 09 cmpl $0x9,0x8049578
804837d: 7f 08 ig 8048387 <foo+0x14>
804837f. ff 05 78 95 04 08 incl 0x8049578
8048385: eb Oa jmp 8048391 <foo+0xle>
8048387: ¢7 05 78 95 04 08 00 movl $0x0,0x8049578
804838e: 00 00 00
8048391: c9 leave
8048392: c3 ret
8048393: 90 nop
Box 4.
080488da <foo>:
80488da: 55 push %ebp
80488dbh: 89 e5 mov %esp,%ebp
80488dd: e8 62 fd ff ff call 8048644 <mcount@plt>
80488e2: 83 3d 00 a2 04 08 09 cmpl $0x9,0x804a200
80488e9: 7f 16 i9 8048901 <foo+0x27>
80488eb: ff 05 00 a2 04 08 incl 0x804a200
80488f1: 83 05 38 a2 04 08 01 addl $0x1,0x804a238
80488f8: 83 15 3c a2 04 08 00 adcl $0x0,0x804a23c
80488ff: eb 18 jmp 8048919 <foo+0x3f>
8048901: c¢7 05 00 a2 04 08 00 movl $0x0,0x804a200
8048908: 00 00 00
804890b: 83 05 40 a2 04 08 01 addl $0x1,0x804a240
8048912: 83 15 44 a2 04 08 00 adcl $0x0,0x804a244
8048919: c9 leave
804891a: 3 ret

The generated assembly code (x86) with in-
strumentation is shown in Box 4.

The first highlighted (80488dd) block repre-
sents a call to the profiling library’s mcount()
function. The mcount() function is called by
every function and records in an in-memory call
graph table a mapping between the current func-
tion (given by the current program counter) and
the function’s parent (given by return address).
This mapping is typically derived by inspect-
ing the stack. The second highlighted block
(80488f1) contains instructions that increment
counters for each of the basic blocks (triggered
by the —-Ftrace-arcs option).

Profiling data that is collected through the
profiling counters is written to a data file (mon.
out). This data can be inspected later using the
GNU gprof tool. Summarized data includes
basic control flow graph information and timing
information between measure pointsin code. The
overhead incurred through this type of profiling
canbesignificant (over 60%) primarily because the
instrumentation worksonan “all or nothing basis.
Table 4 shows experimental results measuring the
performance impact of the GNU GCC profiling
features. Tests were performed by running the
BYTEmark benchmark program (Grehan, 1995)
on a 3.00 GHz Intel Pentium-D running Redhat
Enterprise Linux v4.0. It is possible, however, to

167

Dynamic Analysis and Profiling of Multithreaded Systems

Table 4. Slow-down incurred by GNU GCC profiling

Test No profiling | With profiling | % Slow Down
Numeric Sort 812.32 498.2 38.67
String Sort 103.24 76.499 25.90
Bitfield 4.35E+08 1.65E+08 62.11
FP Emulation 73.76 52.96 28.20
Fourier 15366 15245 0.79
Assignment 24.292 9.77 59.78
Huffman 1412.7 1088.7 22.93
Neural Net 18.091 12.734 29.61
LU Decomp 909.76 421.48 53.67

enable profiling on selected compilation units,
thereby minimizing instrumentation costs.

This type of code instrumentation is termed
static because the code is modified before execu-
tion of the program (Figure 2, label C). COTS
compiler-based instrumentation for profiling is
generally limited to function calls and iteration
counts. Another more powerful form of static
binary instrumentation involves the use of a set
of libraries and APIs that enable users to quickly
write applications that perform binary rewriting
(Hunt & Brubacher, 1999; Larus & Schnarr,
1995; Srivastava & Eustace, 1994; Romer, et al.,
1997; Hollingsworth, Miller, & Cargille, 1994).
The following capabilities are typical of binary
rewriting libraries:

. Redirection of function calls and insertion
of trampoline functions that execute the
originally called function;

. Insertion of additional code and data; and

. Control and data-flow analysis to guide
instrumentation.

The following code illustrates the use of con-
trol-flow analysis and insertion of additional code
through the Editing Executable Library (EEL)
(Larus & Schnarr, 1995), machine-independent,
executable editing API: (Box 5)

168

EEL code “snippets” encapsulate of pieces
of code that can be inserted into existing binary
code. They are either written directly in assembly
language (which makes the instrumentation ma-
chine dependent) or written using a higher-level
language that is compiled into assembly. To graft
snippet code into existing code, each snippet
identifies registers used in the snippet that must
be assigned to unused registers.

Dynamic Binary-Code Instrumentation

An alternative to static binary instrumentation
is dynamic instrumentation. Dynamic instru-
mentation, implemented as Just-in Time (JIT)
compilation, is performed after a program has
been loaded into memory and immediately
prior to execution (Figure 2, label D). Dynamic
instrumentation has the advantage that profiling
functionality can be selectively added or removed
from the program without the need to recompile:
Trace functionality is only present when needed.
Moreover, dynamic instrumentation can be ap-
plied reactively, for example, in response to some
eventinthe system, such as processor slow down.
Dynamicinstrumentationis particularly useful for
facilitating conditional breakpoints in code, for
example, Buck and Hollingsworth (2000) show
thatthis approach is 600 times more efficient than
conventional trap-based debug breakpoints.

Dynamic Analysis and Profiling of Multithreaded Systems

Box 5.

nt main(int argc, char* argv[])

{

executable* exec = new executable(argv[1]);
exec->read_contents();

routine* r;

FOREACH_ROUTINE (r, exec->routines())

{
instrument(r);
while('exec->hidden_routines()->is_empty())
{
r = exec->hidden_routines()->first();
exec->hidden_routines()->remove(r);
instrument(r);
exec->routines()->add(r);
}
}

addr x = exec->edited_addr(exec->start_address());
exec->write_edited_executable(st_cat(argv[1], “.count”), x);
return (0);

}

void instrument(routine* r)

{

static long num = 0;

cfg* g = r->control_flow_graph();
bb* b;

FOREACH_BB(b, g->blocks())
if (1 < b->succ()->size())
edge* e;

FOREACH_EDGE (e, b->succ())
{
/I 'incr_count is the user-defined code snippet
e->add_code_along(incr_count(num));
num += 1,
}
}

r->produce_edited_routine();
r->delete_control_flow_graph();

}

The Paradyn work from the University of
Wisconsin, Madison (Miller, Callaghan, Car-
gille, Hollingsworth, Irvin, & Karavanic, 1995)
was designed specifically for measuring the
performance of parallel programs. Paradyn uses

dynamicinstrumentation to apply trace function-
ality according to a set of resource hierarchies,
as shown in Figure 3 (shaded nodes represent an
example focus, all spin locks in CPU#L, in any
procedure). Entities within the resource hierar-

169

Dynamic Analysis and Profiling of Multithreaded Systems

chieseffectively representthe scope of the current
tracing functionality.

Buck and Hollingsworth expanded the dy-
namic instrumentation element of Paradyn in
their Dyninst work (Buck & Hollingsworth,
2000). Dyninst provides a C++ API and a set of
run-time libraries that allow users to build tools
for modifying dynamic binary code. It attaches
to loaded binaries that are either already run-
ning or that are explicitly loaded by the Dyninst
run-time. Once attached to an executable, tools
written using the Dyninst API (termed mutators)
can be used to modify the binary image directly
in memory.

Dyninst works by adding “trampolines” into
the target binary at selected positions, shown in
D. Branchinstructions are inserted into the target
program, at user-defined positions, to redirect
control flow into the base trampoline. Base tram-
polines are instantiated for each instrumentation
point in the target code. Each contains pre- and
post- branching to global primitives (called for
all processes) and local instrumentation primi-
tives (called only for the specific instrumentation
point). Base trampolines also include the original
code that was displaced from the target, which
is also executed.

Dyninst’sthread abstraction allows developers
to associate instrumentation with specific threads
that are running in the system, which is a neces-
sary part of their selective profiling scheme. With
this approach the overhead of instrumentation is
incurred up-front in modifying the binary im-

Box 6.

age. After the image has been modified, the only
overhead is the cost of trampolining and the ad-
ditional instructions imposed by the instrumented
primitives.

Snippetcode (the code which is being added to
the target image) is created using the DyninstAPI
to dynamically assemble variable declarations,
expressions, and so forth. The following excerpt
illustrates how the Dyninst API can be used to
create aglobal counter variable and an expression
that increments it. (Box 6)

Dyninst is designed to target the native pro-
cessor; the modified instructions target the actual
underlying hardware. Other work, such as Pin
(Luk et al., 2005), Dixie (Fernandez, Ramirez,
Cernuda, & Espasa, 1999), DynamoRIO (Bru-
ening, 2004), and Valgrind (Nethercote, 2004),
have pursued the use of JIT cross-compilation so
that the modified binary code can be executed on
an emulated (i.e., virtual) machine architecture.
Targeting a virtual machine provides more con-
trol and the ability to inspect low-level details of
behavior, such as register and cache activity. It
also does not necessarily imply translation across
different instruction set architectures (ISA). In
most instances, the virtual machine uses the
same ISA as the underlying host, so that while
hooks and interceptors can be put in place, the
bulk of the code can simply be passed through
and executed by the host.

The Pin program analysis system (Luk et al.
2005) is an example of dynamic compilation
targeting a virtual machine architecture using

1

1

/I create a global int variable in the address space of the application
BPatch_variableExpr * intCounter = appThread->malloc(*applmage->findType(“int”));
/I create an expression that increments counter variable

BPatch_arithExpr addOne(BPatch_assign, *intCounter, BPatch_constExpr(1));

170

Dynamic Analysis and Profiling of Multithreaded Systems

the same ISA as the underlying host. As shown
in Figure 5, the Pin system consists of:

. Instrumentation API, which is used to write
programsthatperformdynamicinterception
and replacement;

. JIT Compiler, which compiles and instru-
ments the bytecode immediately before
execution;

. Code cache, which caches translations be-
tweenthetargetbinary andthe JIT compiled
code;

. Emulationunit, which interpretsinstructions
that cannot be executed directly; and

. Dispatcher, which retrieves and executes
code from the code cache.

Toanalyze aprogram’s behavior (multithread-
ed or not), Pin users must write a program that
performs dynamic instrumentation. Pin provides
an API based on the ATOM API (Srivastava &
Eustace, 1994) that shields programmers from

Figure 5. The Pin software architecture

idiosyncrasies of the underlying instruction set
and allows passing of context information, such
asregister contents, to the injected code as param-
eters. Pin programs typically consist of analysis
and instrumentation elements. The basic building
blocks for defining instrumentation points are
machine instructions, basic blocks, procedures,
images, and applications. For example, the C++
code below shows the use of the Pin API to in-
strumentthe target code with trace functionseach
time sleep() is invoked.

First, a replacement function is defined with
the same signature as the function that is being
replaced (in this example sleep()). (Box 7)

Acallback function ImageLoad() isusedto
intercept binary-image loads that are executed by
thetargetapplication. The Pin APl canthen be used
to obtain the function that will be replaced with
the new tracing/trampoline function. (Box 8)

Theinstrumentation function is “hooked” onto
image loadsthrough IMG _ AddInstrument-
Function() as follows:

Instrumentation APIs
: Virtual Machine (VM)
JIT Compiler E Code Cache
i | Application *"-'(;
5 g >
: Emulation Unit (=)
Operating System \J
Hardware

171

Dynamic Analysis and Profiling of Multithreaded Systems

Box 7.
typedef VOID * (*FP_SLEEP)(unsigned int);
/I This is the replacement routine.
VOID * NewSleep(FP_SLEEP orgFuncptr, UINT32 arg0, ADDRINT returnlp) {
/I Normally one would do something more interesting with this data.
1
cout << “NewsSleep (“
<< hex << ADDRINT (orgFuncptr) <<*, *
<< dec << arg0 <<*,*“
<< hex << returnlp << *)”
<< endl << flush;
/I Call the relocated entry point of the original (replaced) routine.
1
VOID * v = orgFuncptr(arg0);
return v;
}
Box 8.

/I Pin calls this function every time a new image is loaded. It is best to do probe
/I replacement when the image is loaded,because only one thread knows about the image at
/I this time.
VOID ImageLoad(IMG image, VOID *v)
{
/I See if sleep() is present in the image. If so, replace it.
1
RTN rtn = RTN_FindByName(image, “sleep”);

if (RTN_Valid(rtn))
{

cout << “Replacing sleep in “ << IMG_Name(image) << endl;

/I Define a function prototype that describes the application routine

/I that will be replaced.

1

PROTO proto_sleep = PROTO_Allocate(PIN_PARG(void *), CALLINGSTD_DEFAULT,
“sleep”, PIN_PARG(int), PIN_PARG_END());

/I Replace the application routine with the replacement function.

/I Additional arguments have been added to the replacement routine.

/I The return value and the argument passed into the replacement

/ function with IARG_ORIG_FUNCPTR are the same.

1

AFUNPTR origptr = RTN_ReplaceSignatureProbed(rtn, AFUNPTR(NewSleep),
IARG_PROTOTYPE, proto_sleep,
IARG_ORIG_FUNCPTR,
IARG_FUNCARG_ENTRYPOINT_VALUE, 0,
IARG_RETURN_IP,
IARG_END);

cout << “The original entry point to the replaced function has been moved to 0x”;
cout << hex << (ADDRINT) origptr << dec << endl;

continued on following page

172

Dynamic Analysis and Profiling of Multithreaded Systems

Box 8. continued

/I Free the function prototype.
PROTO_Free(proto_sleep);

}
else {

cout << “Could not find routine in image\n”;
}

int main(INT32 argc, CHAR *argv[]) {
/I Initialize symbol processing
1
PIN_InitSymbols();

/I Initialize pin
1
PIN_Init(argc, argv);

/I Register ImageLoad to be called when an image is
loaded

1

IMG_AddInstrumentFunction(ImageLoad, 0);

/I Start the program in probe mode, never returns
1
PIN_StartProgramProbed();

return O;

The target program is run until completion
throughPIN _ StartProgramProbed().Pin
also supportsthe ability to dynamically attach and
detach from a long-running process if transient
tracing is needed.

Dynamic compilation and virtual machine
execution incur overhead. With respect to Pin,
overhead primarily stems from performing
JIT-compilation, helped by the use of a code-
translation cache.

Figure 6 shows Pin performance data taken
from Luk et al. (2005). These results show that
the slowdown incurred by Pin is approximately
four times slower than the original code without
instrumentation. Even though this slowdown is
significant, the Pin approach is one of the fastest
JIT-based profiling solutions available today.

Summary of Compiler-Based
Instrumentation Techniques

Instrumenting program code with tracing func-
tionality is a powerful means of understanding
system behavior. Modifying source code provides
astraightforward means to collect trace informa-
tion that must relate to application-level program
functionality. It therefore enables the customiza-
tion of trace insertion according to the program
“features” of interest.

Alternatively, binary instrumentation is well
equipped to handle complex software where the
executed code cannot be identified until runtime.
Binary-level modifications and execution on vir-
tual machine architectures allow straightforward
inspection of machine-level registers and data,
such as the stack and caches. Conversely, because
binary modification operates at such a low level,
it is sometimes hard to specify what to instru-
ment when semantics cannot be easily linked to
program-level functions and basic blocks. Binary
instrumentation is primarily supportive of active
profiling, although the use of a virtual machine
to execute code also provides a means to profile
passively.

Fromthe perspective of profiling multithreaded
programs specifically, binary-code instrumenta-
tion can provide an effective means to intercept
and instrument synchronization functions where
source code isnotavailable orwhenthereisaneed
for very fine-grained information, such as access
to cache state. Binary-code instrumentation also

173

Dynamic Analysis and Profiling of Multithreaded Systems

Figure 6. Pin performance test results (Luk et al., 2005)

500

450
400
350
300
250

= Without
instrumentation

m With basic-block
counting

200
150 +

100
50
0

Normmalized Execution Time (%)

Test Application

provides detailed access to memory and thus ac-
cess to thread and process-control blocks useful
in profiling multithreaded applications.

OPERATING SYSTEM AND
MIDDLEWARE PROFILING
TECHNIQUES

All applications rely upon services provided by
the underlying operating system. These services
are primarily used to coordinate access to shared
resources within the system. To measure service
“requests” probes canbe placed directly withinthe
operating system code that can record individual
application access to provided services. Many
COTS operating systems also provide a number
of performance counters that explicitly track
usage of shared resources. Data generated from
these counters—along with data from embedded
probes—can be combined to form amore complete
picture of application behavior.

Another common form of shared processing
infrastructure is distributed computing middle-
ware, such as OMG’s CORBA and Microsoft’s

174

.NET, which provide common services, such as
location transparency and concurrency manage-
ment. Distributed computing middleware often
provides a number of “hook points,” such as
interceptors and smart proxies that are accessible
to users. These hooks provide placeholders for
adding probe functionality that can be used to
measure events typically hidden deeper within
the middleware.

This section firstdiscusses techniques that can
be used to place probes into operating system ser-
vices and how this information can be combined
with data generated from operating system-level
performance counters. We then discuss two ap-
proaches to profiling distribute middleware ap-
plications deployed on the CORBA platform.

Profiling System Call Interception

A typical process contains one or more threads
and a shared memory space. Application code
that is executed by threads within a process is
free to access various operating system resources
and services, such as virtual memory, files, and
network devices. Access to these resources and
services is facilitated through APIs that are

Dynamic Analysis and Profiling of Multithreaded Systems

provided by system libraries. Each thread in the
system executes in either user space or kernel
space, depending upon the work it is doing at
that given time.

Whenever a thread makes a system call, it
transitions (e.g., via a trap) from user space to
kernel space (Soloman, 1998; Beck et al., 1999).
Invoking system calls for thread management
(e.g., thread creation, suspension, or termination)
and synchronization (e.g., mutex or semaphore
acquisition) oftenrequire such atransition. System
call transitioning code therefore provides a useful
interception point at which process activity can
be monitored and a profile of system resource use
can be extracted on a per-thread basis.

Figure 7 shows the use of the interpositioning
technique, where libraries are built to mimic the
system API. These libraries contain code that
record a call event and then forward the call to
the underlying system library.

The threadmon (Cantrill & Doeppner, 1997)
tool uses interpositioning to insert trace code
between the user-level threads library and the
application by redefining many of the functions
that the library uses internally to change thread
state. Thistechnique isalso used by Broberg’s Vi-
sualization of Parallel Program Behavior (VPPB)
tool (Broberg, Lundberg, & Grahn, 1999) to gather
user-level thread information. Inboth approaches,

data obtained by user library interpositioning is
integrated with data collected from other operat-
ing system services, such as the UNIX /proc
file system or kstat utility. The threadmon
and VPPB tools both target the Solaris operating
system and therefore rely upon Solaris-specific
system utilities, such as memory mapping of /
dev/kmem to access the kernel.

Cantrill and Doeppner (1997) and Broberg et
al. (1999) have also used another tool known as
Trace Normal Form (TNF) (Murayama, 2001).
This tool generates execution event traces from
the Solaris kernel and user processes. Solaris
providesan API forinserting TNF probes into the
source code of any C/C++ program. ATNF probe
is a parameterized macro that records argument
values. The code excerpt below shows how C
macroprobes can be inserted at the beginning and
end of critical code to record the absolute (wall-
clock) time required for the code to execute.

#include <tnf/probe.h>
extern mutex_t list_mutex;
TNF_PROBE_1(critical_start, “critical section start”,

“mutex acquire”, tnf_opaque, list_lock, &list_mutex)

mutex_lock(&list_mutex);

Figure 7. Systems calls intercepted by system trap profiling library

Compiled
Binary

Running
Process

Instrumented

Library User Space

Kernel
System Space
Library

175

Dynamic Analysis and Profiling of Multithreaded Systems

[* critical section code */

mutex_unlock(&list_mutex);

TNF_PROBE_1(critical_end, «critical section end»,
«mutex release»,
tnf_opaque, list_lock, &list_mutex)

These probes can be selectively activated dy-
namically at run time. Events are recorded each
timeaprobeisexecuted. Each probe automatically
records thread-specific information, such as the
thread identifier, but it may also record other data
related to the state of the application at the time
the eventwas triggered. Eventrecords are written
to a binary file that is subsequently parsed and
analyzed by an offline process. The Solaris kernel
also contains a number of TNF probes that can
record kernel activity, such as system calls, 1/0
operations, and thread state change. These probes
can be enabled/disabled using a command-line
utility known as prex (Murayama, 2001). Data
records from the probes are accumulated withina
contiguous portion of the kernel’s virtual address
space and cannot be viewed directly. Another
utility that runs with administrator privileges can
be used to extract the data and write it to a user
file. This data can then be correlated with other
user-level data to provide a clear understanding
of the behavior of the application run.

The probe-based technique described above
provides a detailed view of the running state of
theapplication. Behavioral data details call counts,
timing information, and resource use (thread and

system state). There are some drawbacks to this
approach, however, including:

e The solution is not portable because it
depends on Solaris features that are not
available on other operating systems.

. It requires a considerable amount of devel-
opment effort because thread libraries must
be modified.

* Applications must be separately built and
linked for profiling.

. Tools that are used to collect the data like
TNF or kstat may require lengthy setup
and configuration.

Microsoft Windows Performance
Counters

. Other operating systems have comparable
probe-based features that can be used to
get comparable data-defining application
behavior. For example, Microsoft Windows
provides performance counters (Microsoft,
2007a) that contain data associated to the
running system. Windows provides a con-
sole that can be used to select certain spe-
cific counters related to specific processes.
Once selected, the values of these counters
will be displayed on the console at regular
intervals. Table 5 shows example counters
that are available.

Windows stores the collected values in the
registry, whichisrefreshed periodically. Develop-
ers typically retrieve the data from the registry

Table 5. Performance counters provided by the Windows Operating System

Category Description Sample Counters

Process Provides data related to each process % Processor Time, % User Time, 1O activity, Page Faults etc.
Processor | Provides information about the overall machine % Processor time, % User Time, %ldle Time etc.

Memory | Provide data related to the memory of the system Available Bytes, #Page Faults/sec, #Page Reads/sec etc.

Threads Provides data on the threads in the system # of Context Switches/sec, Thread State, Thread Wait Reason etc.

176

Dynamic Analysis and Profiling of Multithreaded Systems

directly orusean APl known as Performance Data
Helper (Microsoft, 2007c; Pietrik, 1998). Alter-
natively, the Microsoft NET framework provides
the System.Diagnostics namespace that
facilitates access to all the counters from within
a .NET application.

Windows performance counters can be usedto
acquire data related to the running system, which
can be correlated with a particular application
run. These counters give an external view of the
application, however, and there is no straightfor-
ward method of mapping counter values to logi-
cal application events. To more closely inspect a
running application, therefore, instrumentation
is needed within the application itself to record
logical events and combine them with data gener-
ated through performance counters.

Distributed System Profiling

A distributed system consists of applications
whose components are spread over a network of
hosts that work together to provide the overarch-
ing functionality. The complexity of distributed
applications is often considerably greater than a
stand-alone application. In particular, distributed

Figure 8. MCBS probe instrumentation

applications must address inherent complexities,
such as latency, causal ordering, reliability, load
balancing, and optimal component placement,
thatare either absent from (or less complicated in)
stand-alone applications (Schmidt, Stal, Rohnert,
& Buschmann, 2000). The analysis and profiling
of distributed applications involves monitoring
key interactions and their characteristics along
with localized functionality occurring withineach
component. Below we examine two approaches
to profiling distributed system behavior. One ap-
proach modifies generated stubs and skeletons,
whereas the other uses profiling extensibility
features available in the middleware.

Monitoring of Component-Based
Systems (MCBS)

MCBS (Li,2002) isa CORBA middleware-based
monitoring framework that can be used to capture
application semantics, timing latency, and shared
resource usage. Although the MCBS prototype is
CORBA-basedthe solution can be extended toany
distributed objectarchitecture that generates stubs
and skeletons. The MCBS approach recreates call
sequences across remote interfaces. Probes are

Instrumented
Probes

/
¥

Stub

TN

Y

-

N

. Skeleton

=

Instrumented
Probes

177

Dynamic Analysis and Profiling of Multithreaded Systems

instrumented automatically throughaspecialized
Interface Description Language (IDL) compiler,
which directly modifies the generated stubs and
skeletons with code that records call entry and
return events, as shown in Figure 8.

Along with calls and returns, the MCBS-
modified stubs and skeletons can also profile
higher-level transactions (as aggregated calls),
as well as parameters and return values. Event
data is recorded to a log and a unique identifier
assigned so that the scenario/call chain can be
identified later. This identifier is generated at the
start probe and is propagated through the calling
sequence via thread-local storage (Schmidtetal.,
2000), which is global data that is only available
to the owning thread. When each new interface
is invoked, the stub receives the identifier from
the thread-specific storage, creates a record with
it, and stores a number identifying its position in
the call chain. After control returns to the caller
stub, the last record is generated and the call chain
record completed.

Whenever a new thread is created by the ap-
plication, the parent thread identifier is stored
along with the new thread identifier to help identify
the logical call chain in cases where threads are
spawned by user-application code. Event data

is stored in a memory buffer during application
execution and is dumped to a file regularly as
the buffer becomes full. An off-line data collec-
tor picks up the different files for the different
processes and loads them into a database. The
analyzer component processes the data and con-
structs entire call graphs. The end-to-end timing
latency of call scenarios is calculated from the
timestamps and latencies calculated from their
deltas.

MCBS also allows the comparison of mea-
surement overhead against normal (uninstru-
mented) operation. This comparison measures
the instrumented execution timing with timings
collected from the original application that has
been manually instrumented. The manual in-
strumentation is restricted to a single function
at a time to minimize overhead. Table 6 shows
performance data for a sample application. The
sample scenariosare knownto have deterministic
functionality, that is, they perform the same set
of actions every time.

MCBS can reduce measurement overhead
by profiling only specific components of the ap-
plication. Component selection can be achieved
in two ways:

Table 6. Overhead of instrumentation due to probes inserted in stubs and skeletons

Function Average | Standard | Average Standard Interference
(msec) Deviation (msec) Deviation
(msec) (msec)
EngineController::print 1.535 0.158 1.484 1.288 3.4%
DeviceChannel::is_supplier_set 1.865 0.054 1.236 0.025 50.9%
10::retrieve_from_queue 10.155 0.094 9.636 0.094 5.4%
GDl::draw_circle 95.066 10.206 85.866 11.342 10.7%
RIP::notify_downstream 13.831 2.377 11.557 0.381 19.7%
RIP::Insert_Obj_To_DL 2.502 0.141 1.879 0.127 33.2%
10::push_to_queue 13.626 0.298 13.580 2.887 0.3%
UserApplication::notified 0.418 0.04 0.282 0.099 48.3%
Render::deposit_to_queue 0.529 0.097 0.358 0.010 47.8%
Render::render_object 7.138 2.104 6.280 0.074 13.6%
Render::retrieve_from_queue 0.501 0.040 0.318 0.010 57.6%

178

Dynamic Analysis and Profiling of Multithreaded Systems

. Statically prior to executing, where moni-
tored components are selected and the ap-
plication is then run. The application must
be stopped and restarted if the selected set
of components changes.

. Dynamically while the application is run-
ning, where the monitored components can
be selected at runtime. Dynamic selection
helps developers focus on problem area and
analyze it without incurring overhead due
to measurement of other components.

Li (2002) has implemented both approaches
and suggests that static selection is more straight-
forward (in terms of instrumentation effort) than
dynamic selection. Dynamic selection is more
complicated because it must avoid data incon-
sistency that can arise if a component process
receives an off event, where monitoring is forced
to stop during a run. Modifying instrumentation
dynamically thus relies on the system reaching
a steady state.

The current MCBS prototype is restricted
to synchronous remote procedure calls. It does
not support dynamic function invocations (e.g.,
through CORBA DII) nor does it support stub-
less colocated objects.

OVATION

OVATION (Object Computing Incorporated,
2006; Gontla, Drury, & Stanley, 2003) is a dis-
tributed monitoring framework that uses similar
concepts as the MCBS framework. It is, however,
specifically targeted to CORBA middleware and
has been tested on both TAO (Schmidt, Natara-
jan, Gokhale, Wang, & Gill, 2002) and JacORB
(Brose, 1997).

The OVATION tool uses CORBA Portable
Interceptors (OMG, 2002) to insert probes. Por-
table Interceptors are based on the Interceptor
pattern (Schmidt et al., 2000), which allows
transparent addition of services to a framework
and automatic triggering of these services when

certain events occur. Whenever a CORBA client
calls a server component client stub and server
skeleton interceptors are invoked. Each intercep-
tor can perform any arbitrary function, such as
timestamping an event or recording information
about a call to a log file.

OVATION provides a number of predefined
probes, including:

. Snooper Probe, which captures CORBA
operationinformation, suchasrequestname,
arguments, request start time, end time and
the threads and the processes to which an
operation belongs;

¢ Milestone Probe, which permitsthe manual
demarcation of specific events in the applica-
tion code; and

. Trace Probe, which is used to capture
information about the other non-CORBA,
C++ or Java object method calls.

OVATION also allows users to add their own
custom probesto the monitoring framework. This
feature allows developers to profile application-
specific characteristic without changing their
source code. Moreover, custom probes can be
dynamically enabled and disabled at run time.

Call graphs among components, along with
latency measurements, are reconstructed for each
scenario. OVATION generates log files during
program execution that contain information detail-
ing processes, threads, and objectsinvolved inthe
interaction. The OVATION visualizertransforms
the log file into a graphical representation of the
recorded remote object interactions. An example
screenshot fromthe visualizer showing measured
call sequences is illustrated in Figure 9.

Summary of Operating System and
Middleware Profiling Techniques

All applications interact with the operating sys-

tem and many interact with middleware services
for distributed communication, fault tolerance,

179

Dynamic Analysis and Profiling of Multithreaded Systems

Figure 9. Screenshot of the OVATION visualization tool

FLECOITIR - Protacs! EXE - DL RfacBveriCharmebAaminiObeener |, |
PLEO02792- Protass! EXE - LRt Eweric !
DL Atk

Gty Gresient | ¢

3l

.......

e
rafion_ied

S

FLEsaIna:
o

o

FLE00ITHE- 1
FLEO0TAZ- Frocess! EXE.« Recorfiguiasnigunt
FLSOOITHT- Protess! EXE - Supolie] —
FLE00ITIZ - Frotess! EXE - TreaSoaCaried
USGamponemOal

| | FLSbUITa2- Frocesst EXE - ricngier

| Prangzrae- Processt BE - Lararasd Savat

FLSMIT92- Froess2EXE - 183
FLS00I792- Protast2 ENE - 164
PLED0ITA2- Procass EXE - Bvart Channal 1
FLEOOITAZ- Promess2 EXE - Gateway Al — |
PLEDOITAZ- Frosiss EXE - 0L EweriC hanmobdcnindC opsuma)

B

FLE0OITAZ - Promees EXE - DL |
FLS00I742 - Provesa} EXE - DL e vl hirreldominPrasyPusy! |
0L fitec

PLEDOITAZ - Process? ExE - DXL TrassBosktanager 1.0
PLEOOITAZ- ProtessEXE - Re et

PLEOUITIL- Frocess2 EXE - Supplier] ——
FPLEOOZTEE - Provess}IEXE - Trana Mo Contesd

miEang T

FLEGITIZ - Frotasal EXE - Trae BosMiniager
FLE00ITIE- Reconbgurabon_ Agest EXE - masnd)

men

o ws

security, resource management, and so forth.
Measuring behavior in the layers that supports
application execution is crucial to gaining a com-
plete understanding of the broader system because
applications share resources (e.g., memory, files
and devices) via these layers. Complex interac-
tions and dependencies are often hidden and not
obviously understood by the systems engineer. As
large-scale systems are integrated together, these
hidden dependencies result in resource conflicts
and “causal chains” that lead to unexpected, and
oftenundesirable, behavior. The toolsdescribed in
this section allow profiling of execution that passes
throughthe operating systemand middleware lay-
ers. One challenge faced by these tools and their
users is mapping these behaviors to higher-level
application and distributed events.

VIRTUAL MACHINE PROFILING
TECHNIQUES

The use of virtual machine, such as the Java
Virtual Machine and the Microsoft Common

180

Runtime Language (CLR), is becoming increas-
ingly common in enterprise applications where
portability and security are key requirements.
Figure 10 illustrates a typical VM-based applica-
tion architecture where each user application is
independently layered above the VM.

The use of VMs to run “managed programs”
lends itselfto more portable profiling. Forexample,
dynamicinstrumentation of complete binaries for
VM platforms is more straightforward because
the bytecode represents a hardware agnostic, and
more abstract representation, of the binary code
(Gosling, 1995).

In general, profiling strategies for VMs, such
assampling and instrumentation, are comparable
to their native counterparts; the main factors that
determine effectiveness of a given approach in-
clude (1) implementation complexity, (2) incurred
time/space overhead, and (3) level of detail in the
output. This section describes different methods
used for VM profiling and evaluates the advan-
tages and disadvantages of each.

Dynamic Analysis and Profiling of Multithreaded Systems

Figure 10. Applications running on virtual machine

User Application

User Application

User Application

Virtual Machine

Virtual Machine

Virtual Machine

‘Operating Sytem

Sampling-Based VM Profiling

Oneapproach to profiling applications that execute
in a VM environment is to sample the execu-
tion state (i.e., program counter value and call
stack) at periodic timer-driven intervals. Whaley
(2000) demonstrates the use of such timer-driven
sampling via a “samping profiler” that examines
threads withinthe JVM process corresponding to
the Java application being profiled. The profiler
then periodic traverses the operating system’s
thread queues, and for each active Java thread,
retrieves the register state (program counter and
stack pointer) aswell asthe currenttime. Ineffect,
this is a combination of operating system level
profiling with the restriction on VM processes
(i.e., crossing the OS-VM boundary).

Although sampling-based profiling meth-
ods are relatively lightweight, they are sus-
ceptible to certain problems (Subramaniam &
Thazhuthaveetil, 1994), including:

. Straddling effect of counters: the initial
analysis to segregate the bytecode for dif-
ferentmethods will be approximate, causing
inconsistent results;

* Short submethods: short-lived calls that
take less time than the sampling frequency
may not be recorded at all; and

. Resonance effects: the time to complete a
single iteration of a loop can coincide with
the sampling period, which may sample the
same point each time, while other sections
are never measured.

These problems can be avoided by using
techniques described in Subramaniam and
Thazhuthaveetil (1994). To obtain a consistent pic-
ture of application behavior, however, a significant
number of runs must be performed. This number
will vary from application to application, so the
sampling period may also require configuration
for each application.

Bytecode Counting

Anotherinstance of VM sampling-based profiling
is Komorium (Binder, 2005). Komorium does not
check the program counter at regular intervals.
Instead, a snapshot of the call stack is recorded by
each thread after a certain number of bytecodes
are executed. The motivation for this approach is
that bytecode counting isa platform-independent
metric that does not depend upon VM-specific
profiling services. Bytecode counting can also be
done without on the need for low-level platform-
dependent utilities to acquire resource usage
data, thus making it more portable and easier to
maintain.

Komorium relies on the periodic activation of
auser-defined profiling agent to process samples
of the call stack. Bytecode rewriting is used to
pass the current call stack of the caller into the
profiling function. To schedule regular activation
of the custom profiling function, each thread
maintainsan activation counter (ac) that represents
the upper bound of the number of executed byte-
codes since the last invocation. The active count
is decremented at given points in the code. The

181

Dynamic Analysis and Profiling of Multithreaded Systems

defaultbehavioristo update the active countatthe
beginning of each basic block, which is defined
as a sequence of bytecode that end with a control
flow instruction. At each decrement, a consump-
tion check is made to determine whether the
custom agent (processSample) should be called.
The following excerpt illustrates in pseudo-code
the Komorium binary rewriting: (Box 7)

Binder, Hulaas, and Villaz (2001) evaluated
the Komorium approachthroughexperimentation.
They showed that their approach could sample
at an accuracy of 91% using an overlapping per-
centage metric (Arnold & Ryder, 2001). The best
results were obtained from a profiling granularity
of 5,000-10,000 bytecodes per sample, resulting
in an average overhead of 47-56% for a 10,000
bytecode granularity.

VM sampling-based profiling provides an ef-
fective method of collecting temporal information
relating to program control. These techniques are

Box 7.

can be used to determine task latency;, jitter, and
execution quanta, as well as to identify patterns
of processor migration.

Profiling via VM Hooks

A VM hook represents an access point to a previ-
ously defined event, such as method entry/exit or
thread start/stop, that can occur within the context
of a running application. The profiling agent
implements callback methods on the profiling
interface and registers them with the appropriate
VM hooks. The VM then detects the events and
invokesthe corresponding callback method when
these eventsoccur inthe application. Itisstraight-
forward to develop profilers based on VM hooks
because profiler developers need only implement
an interface provided by the VM, without worry-
ing about the complications that can arise from
modifying the application directly.

/I code added by Komorium.
1

/I number of executed bytecodes
1

1
class Foo {

static {

}

mids[sp++] = mid_sum;
decrementAC(2);
if(getValue(ac) <= 0)

int result = 0;

while(true) {

/I Pseudo Java code illustrating Komorium re-writing. Bold represents additional

/I ac = per-thread activation counter representing the upper bound of the

// mids, sp = represents reifed method ids, stack pointer pair

private static final MID mid_sum;

String cl = Class.forName(“Foo”).getName();
mid_sum = createMID(c1, “sum”, “(ll)I”’);

static int sum(int from, int to, AC ac, MID[] mids, int sp) {

setValue(ac, processSample(mids, sp));

182

continued on following page

Dynamic Analysis and Profiling of Multithreaded Systems

Box 7. continued

decrementAC(3);
if(getValue(ac) <= 0)

if(from > to) {
decrementAC(2);

return result;

}
decrementAC(7);
if(getValue(ac) <= 0)

++from;

}

static int sum(int from, int to) {

setValue(ac, processSample(mids, sp));
if(getValue(ac) <= 0)

setValue(ac, processSample(mids, sp));

setValue(ac, processSample(mids, sp));

result += f(from, ac, mids, sp);

Thread t = Thread.currentThread();
return sum(from, to, ac, new MID[STACKSIZE], 0);

Although the VM and profiling agent provide
the monitoring infrastructure, profiler develop-
ers are responsible for certain tasks, such as
synchronization. For example, multithreaded
applications can spawn multiple instances of the
same event simultaneously, which will invoke the
same callback method on the same instance of
the profiling agent. Callbacks must therefore be
made reentrantviasynchronization mechanisms,
such as mutexes, to avoid compromising profiler
internal state.

The Microsoft Common Language Runtime
(CLR) profiler and the Java Virtual Machine
Tool Interface (JVMTI) are two examples of
VM profilers that that support VM hooks, as
described below.

CLR Profiler

The CLR Profiler (Hilyard, 2005) interface allows
the integration of custom profiling functionality

provided in the form of a pluggable dynamic
link library, written in a native language like C
or C++. The plug-in module, termed the agent,
accesses profiling services of the CLR via the
ICorProfilerInfo?2 interface. The agent must
alsoimplementthe ICorProfilerCallback?2
interface so the CLR can call the agent back to
indicate the occurrence of events in the context
of the profiled application.

At startup, the CLR initializes the agent and
sets the events of interest. When an event occurs,
the CLR calls the corresponding method on the
ICorProfilerCallback?2 interface. The
agent can then inspect the execution state of the
application by calling methods back on the CLR
(ICorProfilerInfo?).

Figure 11 shows the series of communications
triggered by each function entered in the CLR
execution. Inthisexample, in between processing
function enter/exit call-backs, the profiling agent
requests a stack snapshot so it can identify the

183

Dynamic Analysis and Profiling of Multithreaded Systems

Figure 11. Messaging sequence of CLR profiling

Profiler agent loaded (configured through

environment variable).

Profiler agent register "events of interest” (e.g.
selected function calls specified through a filter).

@ CLR makes function “enter” call-back.

@ Request a snapshot of the thread's stack.

@ StackSnapsShot called back.

@ CLR makes function “exit” call-back.

Application

~ -
-~
i
’
!
[
<

CLR Runtime

fully qualified method name and also the call’s
parent, that is, the method from which the method
being traced was called.

Inspecting the stack to determine parental
methods (and ultimately the call-chain) is a useful
technique for disambiguating system calls. For ex-
ample, thisapproach can be used to disambiguate
different lock calls so that per-lock information
(e.g., hold and wait times) can be correlated with
different call sites in the source code.

JVMTI Profiler

The JVMTI (Sun Microsystems Corporation,
2004) is similar to the CLR Profiler Interface in
that it requires a plug-in, which is implemented
asadynamic link library using a native language
that supports C. The JVM interacts with the agent

184

s

SetEnterLeaveFunctionHooks2 1—@—
——-@—D Function Enter Call-back
DoStackSnapShot 1—@—
—@—D StackSnapShot Call-back

—@—> Function Exit Call-back

I
N

\

v

Profiler

throughJVMT I functions,suchasAgent _ On-
Load() and Agent _ OnUnload(), which
are exported by the agent. The JVM supplies a
pointer, via the Agent _ Onload() call, that
the agent can use to get an instance of the JVMTI
environment. The agent can then use this pointer
to access JVMTI features, such as reading the
state of a thread, stopping/interrupting threads,
obtaining a stack trace of a thread, or reading
local variable information. The agent uses the
SetEventCallbacks() method to pass a
set of function pointers for different events it is
interested. When events occur, the corresponding
function is called by the JVM, which allows the
agent to record the state of the application.
Although the CLR and TVMTI profilers share
many common features, such as events related to
methods or threads and stack tracing ability, there

Dynamic Analysis and Profiling of Multithreaded Systems

aredifferences. Forexample, the JVMT I provides
application-specific details, such as the method
name, object name, class name, and parameters,
from the calls, whereas the CLR interface pro-
vides them in a metadata format and details can
only be extracted using the metadata API, which
is tedious. The JVMTI also provides additional
features compared to the CLR, including monitor
wait and monitor waited, which provide informa-
tion related to thread blocking on critical sections
of code.

Research (Reiss, 2003, 2005) has shown that
the JVMTI interface incurs significant runtime
overhead because the profiling agent is written in
anative language, so JNI calls (Sun Microsystems
Corporation, 2002) are needed to call this agent.
JNI calls can incur significant overhead because
they perform actions such as saving registers,
marshaling arguments, and wrapping objects
in JNI handles (Dmitriev, 2002). This overhead
may not be acceptable for some applications, so
the explicit bytecode instrumentation approach
described in the next section may be a less costly
solution because it does not use JNI.

Application Code Instrumentation

Although sampling- and hook-based instrumenta-
tion can be performed with relatively little over-
head, the breadth of the information collected is
limited and often insufficient to build application-
level detail. An alternative is to instrument the
application’s bytecode directly. Bytecode instru-
mentation inserts functionality (in the form of
additional bytecodes) that performs application
profiling within compiled code. The Komorium
work discussed previously is a form of byte code
instrumentation. However, we differentiate the
discussion in this section by instrumentation that
is driven directly by the application logic.

As a general approach, bytecode instrumen-
tation involves redefining classes that are going
to be profiled by replacing the original bytecode
with instrumented code that contains logging ac-

tions triggered by specific events. This approach
enables the use of application-specific events for
profiling, such as transaction completion or data
regarding critical sections of the application.
Bytecode instrumentation has in most instances
less overhead and greater flexibility than using
VM-provided profiling interfaces. Nevertheless,
the responsibility of implementing measurement
functionality lies with the profiler user.

There are several approaches to bytecode
instrumentation, including:

. Static instrumentation, which involves
changing the compiled code off-line be-
fore execution that is, creating a copy of
the instrumented intermediate code. Many
commercial profilers, such as Optimizelt
(Borland Software Corporation, 2006),
work this way. Static instrumentation has
also been implemented by Reiss (2003) and
later extended in Reiss (2005).

. Load-time instrumentation, which calls the
agentbefore loading each class, and passesiit
the bytecode for the class that can be changed
by theagentandreturned. The JVMTI/CLR
profilerinterfaces are examples of load-time
instrumentation.

. Dynamic instrumentation, which works
when the application is already running
and also uses a profiler interface (Dmitriev,
2002). The agent makes a call to the VM
passing it the new definitions of the classes
that are installed by the VM at runtime.

Like other forms of code modification, dynam-
ic instrumentation supports “fix and continue”
debugging, which avoids lengthy exit, recompile,
and restart cycles. It also helps reduce application
overhead by enabling developers to (1) pinpoint
specific regions of code that are experiencing per-
formance problems at runtime and (2) instrument
the classes’ involved, rather than instrumenting
the entire application. Instrumented classes can
be replaced with the original ones after sufficient
data is collected.

185

Dynamic Analysis and Profiling of Multithreaded Systems

Dynamic instrumentation of bytecode is
typically more straightforward than dynamic
instrumentation of low-level machine instructions
because of the higher level of abstraction. More-
over, modifying bytecode providesamore portable
solution that is largely agnostic to the underlying
operating system and hardware platform.

Withinthe context of Java, the JVMT I provides
amethod knownasRedefineClasses() thata
profileragentcanusetoinsert “new” bytecode into
an existing class. When this method is invoked,
the JVM performs all the steps needed to load a
class, parse the class code, create objects of the
class, and initializes them. After these steps are
complete, the JVM performs hot-swapping by
suspending all threads and replacing the class,
while ensuring that all pointers are updated to
point to the new object (Dmitriev, 2001).

These dynamic instrumentation activities can
incur significant overhead in production environ-
ments and thus must be accounted for accord-
ingly. Some research is investigating techniques
to minimize the overhead incurred by dynamic
instrumentation. For example, work by Dmitriev
(2002) is investigating the use of “method swap-
ping” so that bytecode replacement can be done
atafiner granularity than class-level replacement.
Similartechniquesare also being explored within
the context of the .NET platform (Vaswani &
Srikant, 2003).

A number of tools have been developed to
help instrument bytecode, much like the Pin API
described earlier. Examples include BIT (Lee,
1997) and IBM’s Jikes Bytecode Toolkit (IBM
Corporation, 2000). These tools shield application
developers from the complexity of bytecode by
providing an API that can be used to parse and
modify it.

* The three bytecode instrument techniques
(i.e., static, load-time, and dynamic) incur
similaroverhead. Dynamic bytecode instru-
mentation is more powerful, butis generally
more complex and error-prone than static

186

and load time instrumentation. Dynamic in-
strumentation also requires creating “new”
objects of the “new” classes correspond-
ing to all “old” objects in the application,
initializing their state to the state of the old
object, suspend the running threads, and
switching all pointers to the “old” objects to
the “new” objects. Thisreplacement process
is complicated, so application state may be
inconsistent after the operation, which can
cause incorrect behavior.

. Static and load-time instrumentation are
generally easier to implement than dynamic
instrumentation because they need not
worry about the consistency of a running
application. Dynamic instrumentation has
a broader range of applicability, however, if
done efficiently. Currentresearch (Dmitriev,
2002, 2004) is focusing on how to make
dynamic instrumentation more efficientand
less complicated.

Aspect-Oriented Techniques Used
for Instrumentation

Although explicit bytecode instrumentation is
more flexible and incurs less overhead than VM
hooks, the implementation complexity is higher
because developers must be highly skilled in
bytecode syntax to instrument it effectively with-
out corrupting application code. Aspect-oriented
Programming (AOP) helps remove this complexity
and enables bytecode instrumenting at a higher
level of abstraction. Developers can therefore
focus on the logic of the code snippets and the
appropriate insertion points, rather than wrestling
with low-level implementation details (Davies,
Huismans, Slaney, Whiting, & Webster, 2003).
Relevant AOP concepts include (1) join-points,
which define placeholders for instrumentation
within application code, (2) point-cuts, which
identify a selection of join-points to instrument,
and (3) advice, which specifies the code to insert
at the corresponding join-point.

Dynamic Analysis and Profiling of Multithreaded Systems

AspectWerkz (Boner, 2004) is a framework
that uses AOP to support static, load-time, and
dynamic (runtime) instrumentation of bytecode.
The advantages and disadvantages of the various
techniques are largely similar to those discussed
earlier. There are also aspects to consider when
using an AOP-based approach, however, which
we discuss below.

The AOP paradigm makes it easier for develop-
ers to insert profiling to an existing application by
defining a profiler aspect consisting of point-cuts
and advice. The following excerpt illustrates the
use of AspectWerkz to define join-points before,
after, and around the execution of the method
HelloWorld.greet(). The annotations in
the comments section of the Aspect class express
the semantics, for example, “@Before execu-
tion (* <package name>.<class _
name>.<method _ name>)" means the
method will be called before the execution of the
<method _ name> mentioned.

M T
1
package testAOP;

import org.codehaus.aspectwerkz.joinpoint.JoinPoint;

public class HelloWorldAspect {
/**
* @Before execution(* testAOP.HelloWorld.greet(..))
*
public void beforeGreeting(JoinPoint joinPoint) {
System.out.printin(“before greeting...”);

}
/**
* @After execution(* testAOP.HelloWorld.greet(..))
*
/
public void afterGreeting(JoinPoint joinPoint) {
System.out.printin(“after greeting...”);

}

/**
* @Around execution(* testAOP.HelloWorld2.greet(..))
*/
public Object around_greet (JoinPoint joinPoint) {
Object greeting = joinPoint.proceed();
return “<yell>”" + greeting + “</yell>";

Advice code can be written in the managed
language, sothere isno needto learnthe low-level
syntax of bytecode because the AOP framework
can handle these details. The bulk of the effort
therefore shifts to learning the framework rather
than bytecode/IL syntax, which is advantageous
because these frameworks are similar even if
the target application language changes, for
example, from Java to C#. Another advantage is
the increased reliability and stability provided by
a proven framework with dedicated support. For
example, developers need not worry about prob-
lems arising with hot-swap or multiple threads
being profiled because these are handled by the
framework.

Some problems encountered by AOP ap-
proaches are the design and deployment over-
head of using the framework. AOP frameworks
are generally extensive and contain a gamut of
configuration and deployment options, which
may take time to master. Moreover, developers
must also master another framework on top of
the actual application, which may make it hard
to use profiling extensively. Another potential
drawback is that profiling can only occur at the
join-points provided by the framework, which is
often restricted to the methods of each class, that
is, before a method is called or after a method
returns. Application-specific events occurring
within a method call therefore cannot be profiled,
which means that nondeterministic events cannot
be captured by AOP profilers.

Summary of Virtual Machine
Profiling Techniques

Java and C# are two prominent VM-based lan-
guages that are becoming increasingly dominant
in the development of enterprise-style systems.
The advantage of ease-of-use, security and porta-
bility is driving their success. Nevertheless, from
a run-time analysis and profiling perspective,
they do pose additional challenges by executing
programs in a “hidden” VM. The tools in this

187

Dynamic Analysis and Profiling of Multithreaded Systems

section can be used to extend profiling capabili-
ties into a VM environment.

The decision to choose a particular profiling
technique depends uponapplication requirements.
The following criteria are useful to decide which
approach is appropriate for a given application.

. Sampling is most effective when there is a
need to minimize runtime overhead and use
profiling in production deployments, though
application-specific logical events may not
be tracked properly.

. The simplest way to implement profiling is
by using the JVMTI/CLR profiling inter-
face, which has the shortest development
time and is easy to master. Detailed logical
events may not be captured, however, and
the overhead incurred may be heavier than
bytecode/IL instrumentation.

. Bytecode/IL instrumentation is harder to
implement, but gives unlimited freedom to
the profiler to record any event in the ap-
plication. Implementing a profiler is harder
than using the JVMTI/CLR profiling inter-
face, however, and a detailed knowledge of
bytecode/IL isrequired. Amongthe different
bytecode/IL instrumentation ways, com-
plexity of implementation increases from
static-time instrumentation to load-time to
dynamic instrumentation. Dynamic instru-
mentation provides powerful features, such
as “fix and continue” and runtime problem
tracking.

* The use of an AOP framework can reduce
the development complexity and increase
reliability because bytecode/IL need not be
manipulated directly. Conversely, AOP can
increase design and deployment overhead,
which may make it unsuitable for profiling.
Moreover, application-level events may be
hard to capture using AOP if join-points
locations are limited.

188

HARDWARE-BASED PROFILING
TECHNIQUES

Previous sections have concentrated on modifica-
tionstoprogramcode (e.g., viainstrumentation) or
code that implements the execution environment
(e.0., VM profiling). This section describes hard-
ware profiling techniques that collect behavioral
information inmultithreaded systems, focusing on
two main categories of hardware-based profiling
solutions: on-chip performance counters and on-
chip debugging/in-circuit emulation interfaces.

On-Chip Performance Counters

On-chip debugging/profiling interfaces are spe-
cialized circuitriesthatare addedtoamicroproces-
sor to collect events and measure time. Modern
COTS processors provide on-chip performance
monitoring and debugging support. On-chip,
performance-monitoring supportincludes select-
able counting registers and time stamping clocks.
The Intel Pentium/Xeon family of processors and
the IBM PowerPC family of processors both pro-
vide these performance monitoring features (Intel
Corporation, 2006a; IBM Corporation, 1998).

For example, the Intel Xeon processor pro-
vides one 64-bit timestamp counter and eighteen
40-bit-wide Model Specific Registers (MSR) as
counters (different processor models have a dif-
ferentnumber of performance countersavailable).
Each core (in a multicore configuration) has its
own timestamp counter and counter registers.
The timestamp counter is incremented at the
processor’s clock speed and is constant (at least
in later versions of the processors) across multiple
cores and processors in an SMP environment.
Timestamp counters are initially synchronized
because each is started on the processor RESET
signal. Timestamp counters can be written to
later, however, potentially get them out of sync.
Counters must be carefully synchronized when
accessing them from different threads that po-
tentially execute on different cores.

Dynamic Analysis and Profiling of Multithreaded Systems

The performance counters and timestamp
MSRs are accessed through specialized machine
instructions (i.e., RDMSR, WRMSR, and RDTSC)
or through higher-level APIs such as the Perfor-
mance Application Programming Interface (PAPI)
(London, Moore, Mucci, Seymour, & Luczak,
2001). A set of control registers are also provided
to select which of the available performance
monitoring events should be maintained in the
available counter set. The advantages of using
on-chip performance counters are: (1) they do
not cost anything in addition to the off-the-shelf
processor and (2) they can be used with a very
low overhead. For instance, copying the current
64-bit timestamp counter into memory (user or
kernel) through the Intel RDTSC instruction costs
less than 100 cycles.

Countable events on the Intel Xeon processor
include branch predictions, prediction misses,
misaligned memory references, cache misses
and transfers, 1/0 bus transactions, memory bus
transactions, instruction decoding, micro-op
execution, and floating-point assistance. These
eventsare counted onaper-logical core basis, that
is, the Intel performance counter features do not
provide any means of differentiating event counts
across different threads or processes. Certain ar-
chitectures, however, such as the IBM PowerPC
604e (IBM Corporation, 1998), do provide the
ability to trigger an interrupt when performance
counters negate or wrap-around. This interrupt
can be filtered on a per processor basis and used
to support a crude means of thread-association
for infrequent events.

On-chip performance counters have limited
use in profiling characteristics specific to multi-
threaded programming. Nevertheless, on-chip
timestamp collection can be useful for measur-
ing execution time intervals (Wolf, 2003). For
example, measurement of context switch times of
the operating systems can be easily done through
the insertion of RDTSC into the operating system-
kernel switching code. Coupling timestamp
features with compiler-based instrumentation

can be an effective way to measure lock wait
and hold times.

On-Chip Debugging Interfaces and
In-Circuit Emulators (ICE)

Performance countersare only useful for counting
global events inthe system. Additional functional-
ity is therefore needed to perform more powerful
inspection of execution and register/memory
state. One way to provide this functionality is by
augmenting the “normal” target processor with ad-
ditional functionality. The termin-circuitemulator
(ICE) refers to the use of a substitute processor
module that “emulates” the target microprocessor
and provides additional debugging functionality
(Collins 1997).

ICE modules are usually plugged directly into
the microprocessor socket using a specialized
adapter, as shown in Figure 12. Many modern
microprocessors, however, provide explicit sup-
port for ICE, including most x86 and PowerPC-
based CPUs. A special debug connector on the
motherboard normally provides access to the
on-chip ICE features.

Two key standards define debugging function-
ality adopted by most ICE solutions: JTAG (IEEE,
2001) and the more recent Nexus (IEEE-ISTO,
2003). The Nexus debugging interface is a super-
set of JTAG and consists of between 25 and 100
auxiliary message-based channels that connect
directly to the target processor. The Nexus speci-
fication defines a number of different “classes”
of support that represent different capability sets
composed from the following sets:

. Ownership trace messaging (OTM), which
facilitates ownership tracing by providing
visibility of which process identity (ID)
or operating system task is activated. An
OTM is transmitted to indicate when a new
process/task is activated, thereby allowing
development tools to trace ownership flow.
For embedded processors that implement

189

Dynamic Analysis and Profiling of Multithreaded Systems

Figure 12. Example ICE adapter and ICE module

virtual addressing or address translation,
moreover, an OTM is also transmitted
periodically during runtime at a minimum
frequency of every 256 Program/Trace mes-
sages.

. Program trace via branch trace messaging
(BTM), where messages are triggered for
each change in program flow discontinuity
as a result of either a branch decision or an
exception. Control flow can be correlated to
program code, where the code is static. BTM
messages include timestamp information
and the full target-branch address. Thread/
task ownership can be correlated from the
last received OTM message.

. Datatrace messaging (DTM), whereamini-
mum of two trace windows define the start
and end memory addresses that should be
monitored. DTM messages are dispatched

190

on each read and write of memory in the
defined range. Depending on the type of
DTM message, a timestamp, the data value
read/written, the address of memory access,
the current mapped page, and a control flow
association are included.

. Runtime system memory substitution via
memory substitution messaging (MSM),
which has the ability to substitute portions
of memory with new code passed from the
debugging host via the Nexus interface.
Triggers for substitution are exit, reset, and
watchpoints.

» Signal watchpoint and breakpoint events,
which are used to indicate that specific
instruction addresses or dataaddresses (con-
ditional) have been accessed. Watchpoints
areavariation of breakpointsthatdo not halt
the target processor. Both watchpoints and
breakpoints can be set to operating system
and runtime library functions of interest,
such as thread control and synchroniza-
tion.

Nexus and JTAG-compatible devices can
be chained together and read from the same
debugging host, which is particularly useful for
SMP and multi-core environments, where the
profiling needs to collate events from different
processors.

On-chip debugging interfaces and ICE solu-
tions provide aprimitive means for extracting low-
level behavior of aprogram. They are particularly
useful at collecting “raw” low-level details of ex-
ecution, such as control flow and memory activity,
that in turn can be used to assure absence of race
conditions, deadlock, and so forth. For example,
the following approach might be used to ensure
that a program is free of race-conditions:

. Identify address ranges for memory that are
shared across one or more threads.

. Identify addresses for synchronization locks
and/or functions.

Dynamic Analysis and Profiling of Multithreaded Systems

. Establish data-write triggers for identified
memory addresses and record triggered
events over the execution of the program
in a test run.

. Ensurethatthe appropriate sequence of take
lock, access memory (N times), release lock,
is followed.

Of course, because this type of profiling is
dynamic, the properties can only be ensured for
the states the program entered during the test.

Summary of Hardware-Based
Profiling Techniques

Hardware profiling is typically reserved for
embedded and safety-critical system where un-
derstanding and ensuring system behavior is of
utmost importance. Although hardware profiling
can be relatively costly, it offers the following ad-
vantages over software profiling solutions:

. Nonintrusive data collection. Behavioral
data can be collected with little or no impact
on normal execution of the target system.

. Support for fine-grained data collection.
High frequency data can be precisely col-
lected at speeds commensurate with proces-
sor/bus clock speeds.

. Off-chip inspection capability. Elements of
behavior, suchasbusand cache interconnect
activity, that do not propagate directly into
a general-purpose CPU, can be inspected.

Hardware profiling is particularly advanta-
geous for analyzing certain types of system
behavior (such as memory cache hits/misses) that
are not easily inspected through software means.
Nevertheless, while hardware profiling excels at
inspection of fine-grained system events, deriving
higher-level measures can be harder. Forexample,
using a hardware profiler to determine the level
of concurrency in a system would be hard.

FUTURE TRENDS

This section discusses emerging and future
technological trends in the behavioral analysis
of systems.

Increased Focus on Synergies
Between Static and Dynamic
Analysis Techniques and Tools

Since there is no single approach to system pro-
filing that addresses every need, we believe that
the most effective approach is to use a combina-
tion of static and dynamic analysis to provide a
more complete picture of system behavior. Static
analysis can be used to explore all possible paths
of execution and statistically proportion their
execution likelihood. Likewise, dynamic analysis
can be used to collect more precise information
for concrete instances of a program execution.

Newtoolsandtechniquesare needed, however,
that strategically combine static and dynamic
analysis, and that partition the system into well-
defined “behavioral containers.” As an example
of such tools, work by Artho and Biere (2005)
has developed generic analysis algorithms that
can be applied in either a static or dynamic
context. This solution has been demonstrated
within the context of software fault detection,
whereby faults identified through static analysis
are subsequently verified by actual execution and
dynamic analysis.

Greater Emphasis on Probabilistic
Assurance of Dynamic System
Behavior

Evenwhenstaticand dynamicanalysistechniques
are combined, certain behavioral properties of
large-scale dynamic software systems are still
hard to measure and assure precisely, including
absence of deadlock and livelock conditions,
effective parallelism, and worst-case execution
time. These properties can often be assured to a

191

Dynamic Analysis and Profiling of Multithreaded Systems

givenstatistical probability, though both dynamic
and static analyses are unable to provide abso-
lute assurance in all cases. Even techniques like
explicit-state model checking can only provide
assurance invery small systems, where interaction
with the external environment is well understood
and controlled.

A key reason these properties are hard to mea-
sure accurately stems from sources of (apparent)
nondeterminism in today’s software systems.
Deep causal chains, multiple levels of caching,
and unpredictable interactions between threads
andtheirenvironment lead toanincomprehensible
number of behavior patterns. The openness of
operating systems in their external interactions,
such as networks, devices, and other processors,
and the use of throughput-efficient-scheduling
strategies, such as dynamic priority queues and
task preemption, are the principal cause of such
behavioral uncertainty. Although real-time and
safety-critical operating systems try to ensure
higher levels of determinism by applying con-
straints on execution, such as off-line scheduling,
resource reservation, and cache disabling, these
solutions are often not applicable for general-
purpose systems.

New tools and techniques are needed, there-
fore, that can assure behaviors of dynamic systems
with greater probability. Examplesinclude system
execution modeling (SEM) tools (Hill, Schmidt,
& Slaby, 2007) that enable software architects,
developers, and systems engineers to explore
design alternatives from multiple computational
and valuation perspectives at multiple lifecycle
phases using multiple quality criteriawith multiple
stakeholders and suppliers. In addition to validat-
ing design rules and checking for design confor-
mance, SEM tools facilitate “what if” analysis of
alternative designsto quantify the costs of certain
design choices onend-to-end system performance.
For example, SEM tools can help empirically
determine the maximum number of components
a host can handle before performance degrades,
the average and worse response time for various

192

workloads, and the ability of alternative system
configurations and deployments to meet end-to-
end QoS requirements for a particular workload.
Although the results of SEM tool analysis are
probabilistic—rather than absolute—they still
provide valuable information to users.

Implicit Support for Measurement of
Infrastructure Software and
Processors

Infrastructure software (such as operating sys-
tems, virtual machines, and middleware) and
processors increasingly provide measurement
logic that collects behavioral information during
multithreaded system execution. Although these
capabilities are useful, they are often provided as
add-ons, rather than being integrated seamlessly
into the infrastructure software and processors.
As aresult, the measurement hooks are often not
available when needed or undue effortis required
to configure and optimize them.

New tools and techniques are needed, there-
fore, to provide implicit support for measuring of
infrastructure software and processors. In particu-
lar, the ability to measure and monitor behavior
of the system should be a first class concern.

Total-System Measurement that
Relates and Combines Microscopic
Measurements Together to Give a
Unified View of System Behavior

The nondeterministic nature of today’s large-scale
systems is exacerbated by the lack of integration
between various microscopic measurement tech-
niques—both in hardware and in software—and
the need for a broader perspective in reasoning
aboutand analyzing end-to-end system behavior.
This problem is particularly acute in distributed
real-time and embedded (DRE) systems that must
combine hardware and software components to
meet the following challenging requirements:

Dynamic Analysis and Profiling of Multithreaded Systems

As distributed systems, DRE systems require
capabilitiesto measure the quantity/quality of con-
nections and message transfer between separate
machines,

As real-time systems, DRE systems require
predictable and efficient control over end-to-end
system resources, suchas memory, networks, and
processors, and

As embedded systems, DRE systems have
weight, cost, and power constraints that limittheir
computing and memory resources.

Microscopic measurements of such DRE
systems often fail to provide a unified view of
system behavior, which makes it hard to assure
that the systems meet their functional and QoS
requirements.

Newtoolsandtechniquesare needed, therefore,
to provide total-system measurementthat provides
aunified view of system behavior. An example of
suchatool is Intel’s\VVTune Performance Analyzer
(REF). This tool combines behavioral informa-
tion from the microprocessor (measuring on-chip
counters), the operating system (OS-level context
switching etc.) and the application (application-

level function profiling) to provide an effective
approach to application tuning.

CONCLUDING REMARKS

This chapter reviewed four approaches to analyz-
ing the behavior of software systems via dynamic
analysis: compiler-based instrumentation, oper-
ating system and middleware profiling, virtual
machine profiling and hardware-based profiling.
We highlighted the advantages and disadvantages
of each approach with respect to measuring the
performance of multithreaded and SMP systems,
and demonstrated how these approaches can be
applied in practice.

Table 7 summarizes our assessment of the util-
ity of each approach with respect to key problems
thatarise in developing large-scale, multithreaded
systems. The number of dots in each category
indicates how effective the approach is for mea-
suring the corresponding characteristics (defined
previously in Table 2).

Theresults in Table 7 show that dynamic profil-

Table 7. Summary of dynamic profiling capabilities

Compiler-based Operating System Virtual Machine Hardware-based
Instrumentation & Middleware Profiling Profiling
Profiling
Synchronization overhead oo00 oo00 oo00 oo00
Task latency & jitter o000 o000 o000 (1)
Task execution quanta [X X [X X [X X
Unsafe memory access o0 ° o0
Processor migration (Y X (Y X
Priority inversion o0 o0
Deadlock and livelock ° ° °
Effective parallelism))
Worst-case execution time °

Well suited to analysis of property

®®: Able to partially analyze property or is typically difficult to engineer
®: Approach can be used to collect relevant data, but requires additional processing/analysis capability
No dots: Unable to analyze property effectively

193

Dynamic Analysis and Profiling of Multithreaded Systems

ingis particularly useful where fine-grained event
data can be collected and used to derive charac-
teristics of a running system. Dynamic analysis
is weaker and less capable, when the behavioral
characteristic depends on system-wide analysis,
such as the global thread state. It is therefore
clear that runtime profiling alone is insufficient
to capture and predictacomplete image of system
behavior due to the “as observed” syndrome, that
is, dynamic analysis can only assure statistical
certainty of behavior because it just collects be-
havioral data for a given execution trace.

The alternative to dynamic analysis is static
analysis, such as program analysis and model
checking. The benefits of static analysis are its
ability to (1) perform analysis without running
the system (useful for pre-integration testing),
and (2) allow the inspection of all theoretically
possible (albeit less frequent) conditions. Although
static analysis is promising in some areas, it also
cannot capture and predict a complete image of
behavior for large-scale systems. In particular,
static-analysis techniques are limited in their
practical applicability (e.g., scalability) and in
their ability to relate to wall-clock time.

Behavioral analysistechnology will be increas-
ingly important as the systems we build become
larger, more parallel, and more unpredictable.
New tools and techniques that strategically
combine static and dynamic analysis—and that
partition the system into well-defined “behavioral
containers”—will be critical to the progression
along this path.

REFERENCES

Arnold, M., & Ryder, B. G. (2001). A framework
for reducing the cost of instrumented code. In
Proceedings of the SIGPLAN Conference on
Programming Language Designand Implementa-
tion, (pp. 168-179).

194

Artho, C., & Biere, A. (2005). Combined static
and dynamic analysis. In Proceedings of the 1
International Workshop on Abstract Interpreta-
tion of Object-oriented Language (AIOOL 2005),
ENTCS, Paris. Elsevier Science Publishing.

Baxter, I. (2004). DMS: Program transformations
for practical scalable software evolution. In Pro-
ceedings of the 26" International Conference on
Software Engineering, (pp. 625-634).

Beck, M., Bohme, H., Dziadzka, M., Kunitz, U.,
Magnus, R., & Verworner, D. (1999). Linux Kernel
internals (2nd ed.). Addison Wesley Longman.

Binder, W. (2005). A portable and customizable
profiling framework for Java based on bytecode
instruction counting. In Proceedings of the Third
Asian Symposium on Programming Languages
and Systems (APLAS 2005), (LNCS 3780, pp.
178-194).

Binder, W., & Hulaas, J. (2004, October). A
portable CPU-management framework for Java.
IEEE Internet Computing, 8(5), 74-83.

Binder, W., Hulaas J., &Villaz A. (2001). Por-
table resource control in Java. In Proceedings of
the 2001 ACM SIGPLAN Conference on Object
Oriented Programming, Systems, Languagesand
Applications, (Vol. 36, No. 11, pp. 139-155).

Boner, J. (2004, March). AspectWerkz—Dynamic
AOP for Java. In Proceedings of the 3 Interna-
tional Conference on Aspect-oriented develop-
ment (AOSD 2004). Lancaster, UK.

Borland Software Corporation. (2006). Borland
Optimize-it Enterprise Suite (Computer software).
Retrieved March 11, 2008, from http://www.bor-
land.com/us/products/optimizeit/index.html

Broberg, M., Lundberg, L., & Grahn, H. (1999,
April). Visualization and performance predic-
tion of multithreaded solaris programs by trac-
ing kernel threads. In Proceedings of the 13th
International Parallel Processing Symposium,
(pp. 407-413).

Dynamic Analysis and Profiling of Multithreaded Systems

Brose, G. (1997, September). JacORB: Implemen-
tation and design of a Java ORB. In Proceedings
of IFIP DAIS’97, (pp. 143-154).

Bruening, D. L. (2004). Efficient, transparent,
and comprehensive runtime code manipulation.
Unpublished doctoral dissertation, Massachusetts
Institute of Technology.

Buck, B., & Hollingsworth, J. K. (2000). An API
for runtime code patching. International Journal
of High Performance Computing Applications,
317-329.

Cantrill, B., & Doeppner, T. W. (1997, January).
Threadmon: A tool for monitoring multithreaded
program performance. In Proceedings of the 30th
Hawaii International Conference on Systems Sci-
ences, (pp. 253-265).

Clarke, E. M., Grumberg, O., & Peled, D. A.
(2000). Model checking. Massachusetts Institute of
Technology. Cambridge, MA: The MIT Press.

Clauss, P., Kenmei, B., & Beyler, J.C. (2005, Sep-
tember). The periodic-linear model of program
behavior capture. In Proceedings of Euro-Par
2005 (LNCS 3648, pp. 325-335).

Collins, R. (1997, September). In-circuit emula-
tion: How the microprocessor evolved over time.
Dr. Dobbs Journal. Retrieved March 11, 2008,
from http://www.rcollins.org/ddj/Sep97

Cordy, R., Halpern C., & Promislow, E. (1991).
TXL: A rapid prototyping system for program-
ming language dialects. In Proceedings of the In-
ternational Conference on Computer Languages
(Vol. 16, No. 1, pp. 97-107).

Davies, J., Huismans, N., Slaney, R., Whiting,
S., & Webster, M. (2003). An aspect-oriented
performance analysis environment. AOSD’03
Practitioner Report, 2003.

Dmitriev, M. (2001a). Safe evolution of large
and long-lived Java applications. Unpublished
doctoral dissertation, Department of Computing

Science, University of Glasgow, Glasgow G12
8QQ, Scotland.

Dmitriev, M. (2001b). Towards flexible and safe
technology for runtime evolution of Java language
applications. In Proceedings of the Workshop on
Engineering Complex Object-Oriented Systems
for Evolution (pp. 14-18). In Association with
OOPSLA 2001 International Conference, Tampa
Bay, FL, USA.

Dmitriev, M. (2002). Application of the HotSwap
technology to advanced profiling. In Proceedings
of the First Workshop on Unanticipated Software
Evolution, held at ECOOP 2002 International
Conference, Malaga, Spain.

Dmitriev, M. (2004). Profiling Java applications
using code hotswapping and dynamic call graph
revelation. In Proceedings of the 4th International
Workshop on Software and Performance, Red-
wood Shores, CA, (pp. 139-150).

Fernandez, M., & Espasa, R. (1999). Dixie: A
retargetable binary instrumentation tool. In Pro-
ceedings of the Workshop on Binary Translation,
held in conjunction with the International Confer-
ence on Parallel Architectures and Compilation
Techniques.

Freund, S. N., & Qadeer, S. (2003). Checking
concise specifications of multithreaded software.
Technical Note 01-2002, Williams College.

Gontla, P.